Mi MicroBooN oBooNE cr cross-se secti tion ons s fr from om an osc oscillati tion ons s persp specti tive NUFACT 2017 Xiao Luo, Yale University On behalf of MicroBooNE collaboration 1
Mi Micr croBooNE and and FNA NAL L ne neutr utrino ino be beam am LArTPC ~170 tons, surface detector Fermilab Collecting BNB Neutrino Data for 17 Booster Neutrino Beam months, ~ 6.5e20 POT collected. (BNB) ~ 170 k ๐ ๐ CC interactions POT BNB Neutrinos: ๏ฟฝ ยต 6 -1 ๏ฟฝ /10 10 ยต ๏ฟฝ 2 e /50MeV/m โข Mainly ๐ ๐ ๏ฟฝ Detector e -2 10 upgrade โข ๐ ๐ energy (~700MeV) MicroBooNE -3 10 โข <1% ๐ # contamination. ) -4 10 ๏ฟฝ ( ๏ฟฝ Oct 2015 May 2017 -5 10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Energy (GeV) 2
LArTPC Working princi LAr ciple โ sig signals als โข Charged particles lose energy through Ar excitation ( scintillation light ) and z ionization ( drift electrons ) โข Electrons drift towards anode wire planes under E field. โข MicroBooNE LArTPC has two induction planes and one collection plane. Y โข 3D reconstruction from drift-time (X) and wire-plane matching (Y,Z). โข Number of electrons collected indicates the amount of energy loss from ionization. X 3
LAr LArTPC Wo Working princi ciple Advantages: High Z target: large active volume -> lots of nu interactions. Finely segmented detector: โข High spatial resolution: 3mm wire spacing -> mm vertex accuracy. โข High calorimetric resolution: trace the charged particle ionization Strong particle identification power to tag โข Tracks: muon, proton, charged pions, kaons, etc. โข Showers: electron, gamma, pi0. โข Cold electronics: Low noise -> low threshold. Challenges: โข Cosmic background rejection: ionization chamber is slow (~2ms drift). Surface detector -> ~20 cosmic tracks in 4.8 ms readout window โข High Z target: Nuclear effects affect nu cross-sections. โข Non-uniform detector response: unresponsive channels, shorted wire region. 4
From BNB trigger stream Birdโs eye view ๐ MICROBOONE-NOTE-1002-PUB Time ticks (X) Collection wire number (Z) Run 3493 Event 41075, October 23 rd , 2015 5 75 cm
Mi MicroBooNE us uses es thes these bea e beauti utiful ful i images es t to s study tudy neutr neutrino no os osci cillation on โข Goal I : Understand the nature of the MiniBooNE low energy excess of EM events โข Goal II : SBN (together with SBND and ICARUS) search for sterile neutrinos ( โ๐ ( ~ 1 ๐๐ 2 ) with 5 ๐ sensitivity . โข Goal III : Provide ๐ -Ar cross-section measurements for DUNE. 6
Go Goal al I: : go o after er Mi MiniBooNE NE Lo Low Ene Energy gy Ex Excess ss โข MiniBooNE sees 2.8 ๐ and 3.4 ๐ event excess in ๐ ๐ โถ ๐ ๐ and ๐ ๐ โถ ๐ ๐ Significant background is from ๐ 8 misid and ๐ฟ from delta radiative โข decay. โข Detector can not distinguish e from ๐ฟ . MiniBooNE MicroBooNE Common features Neutrino source: BNB Detector location: ~540 from the source Flux, L/E Differences Detector Cherenkov detector LAr TPC e/ ๐ฟ separation NO e/ ๐ฟ separation Yes Target Mineral oil (CH2) Liquid Argon (Ar) (806 tons) (180 tons) MicroBooNE primary goal: determine if the nature of the excess events are ๐น like or e like. 7 Phys. Rev. Lett. 110, 161801 (2013)
Go Goal al II II: : go o after er St Sterile Ne Neutri trino search - SBN SBN progr gram ICARUS SBND T600 MicroBooNE Fermilab Short Baseline Neutrino program: SBND ICARUS MicroBooNE Shared neutrino beam (BNB) reduce flux โข LArTPC:110m, 112t uncertainty. LArTPC: 600m, 476t LArTPC: 470m, 87t All LArTPC detectors: reduce cross-section โข uncertainty Goal: 5 ๐ sensitivity for sterile neutrino search at โ๐ ๐ ~ 1eV 2 8
Go Goal al III III: : go go after cr cross-se section n unc uncertainty in n Dune une โข Precision measurements of neutrino oscillation parameters. โข Neutrino Mass Hierarchy โข CP violation: ๐ >? Dune CDR arXiv:1512.06148 Dune Far detector is LArTPC. MicroBooNE can give direct cross-section constrain (particularly in low energy region) for Dune oscillation precision measurements. ~2X exposure 9
Osci cillation signals ๐ ๐ โ ๐ ๐ , , ๐ ๐ โ ๐ ๐ Signal selection ๐ energy reco. Syst. Uncertainty โข ๐ ๐ CC inclusive โข ๐ ๐ CC inclusive โข CC0 ๐ โข CC ๐ ๐ โข CC ๐ ๐ โข Charged particle multiplicity, CC0 ๐ 10 โข NC proton identification
Cr Cross-se section n impa pact on n Osc scillation n ๐ ๐ CC inclusive -> ๐ signal selection, Systematic uncertainty 11
๐ ๐ CC CC inc inclus lusiv ive cr cross ss-se sect ction First channel in MicroBooNE cross-section program: ๐ ๐ CC inclusive: โข Relatively simple event signature โ tag long muon track as the product of the neutrino interaction. โข Muon kinematics is insensitive to FSI. โข A standard channel to compare with other neutrino experiments. Impact on oscillation: Signal selection of ๐ C disappearance channel. โข ๐ ๐ CC help to constrain the ๐ ๐ rate. โข ArgoNeuT is the only existing ๐ -Ar cross-section 12
๐ ๐ CC CC inc inclus lusiv ive 1000 No. of Events 900 Data: Beam On- Beam Off Simulation: 800 selected ฮฝ CC+bkgd ยต bkgd ฮฝ 700 ยต + bkgd Cosmic ฮฝ ฮฝ e e 600 NC bkgd 26% ๐ ๐ ๐๐ Cosmic bkgd 500 65% CC true vertex Out of FV bkgd ฮฝ ยต 400 MicroBooNE 300 preliminary Selection 200 100 โข Purity: 65%, Efficiency: 30% 0 0 100 200 300 400 500 600 700 800 900 1000 Track Length (cm) โข Improved analysis: โข Scintillation light to improve the selection efficiency See Marco Del Tuttoโs talk Tue. WG2 talk Check out MicroBooNE public note โข Muon PID to reduce background MICROBOONE-NOTE-1010-PUB for details. Differential cross-section is on the way, stay tuned! 13 Note: efficiency = # of ๐ ๐ ๐๐ events after selection / All ๐ ๐ ๐๐ events inside of FV
Ne Neutri trino oscillati tion Vs Cross-se section CC ๐ ๐ -> ๐ signal selection, Systematic uncertainty, ๐ Energy reconstruction 14
๐ซ๐ซ๐ ๐ select ction Exclusive QE like โInclusiveโ search (1e + 1 p) (1 e + 0 ๐ ) ๐ ๐ ๐ ๐ p hadrons โข Higher statistics โข Simpler topology โข Directly compatible to โข Lower backgrounds MiniBooNE โข Easier ๐ญ ๐ โข Less model dependency determination 15
๐ซ๐ซ๐ ๐ select ction Exclusive QE like โInclusiveโ search ๐ ๐ misID (1e + 1 p) (1 e + 0 ๐ ) โโ ๐ถ๐น ๐ ๐ ๐ ๐ p hadrons Challenges: โข Higher statistics โข Simpler topology โข Suppress photon backgrounds: NC ๐ 8 , CC ๐ 8 , resonant ๐ โข Directly compatible to โข Lower backgrounds interactions in dirt-> ๐ฟ MiniBooNE โข Easier ๐ญ ๐ โข e/ ๐น separation โข Less model dependency determination 16
CC ๐ ๐ cr CC cross-se section measu surement Challenging channel: CC ๐ ๐ ๐๐๐จ๐๐ฃ๐๐๐ฎ๐ ๐๐ฐ๐๐จ๐ฎ โShowerโ reconstruction is difficult especially in โข the low energy range. Strategy: tagging muon and look for two โข ๐น showers The first CC ๐ ๐ cross-section result is on ๐น the way, stay tuned! Impact on oscillation physics: โข Easiest channel to provide large pi0 sample โข Utilize the pi0 for shower automated reconstruction development. โข Enable us to study photon background for the ๐ # appearance channel. 17
PID PID โ sh shower ers ( s (e/ e/ ๐น ) ) Electron Vs Gamma dE/dx at start of the ๐ ๐ Signal ๐ ๐ Background shower? Gaps e-: 1MIP โข ๐ฟ : 1MIP if Compton โข e - scattering, 2MIP if converting to e + e - No Gap Gaps from vertex? ๐ ๐ โ ๐ ๐ ๐ฟ: yes โข e - : no โข BNB DATA : RUN 5360 EVENT 45. MARCH 8, 2016. BNB DATA : RUN 5536 EVENT 1612. MARCH 22, 2016. What Impact PID? โข Require good vertexing. โข Use both dE/dx and gap handles -> better e - tagging. Study the energy dependence of ๐ฟ contamination. โข Note: ArgoNeuT electron like sample has 20% photon contamination with higher energy NuMI beam. 18 ArgoNeuT PhysRevD.95.072005
Ne Neutri trino oscillati tion Vs Cross-se section NC elastic -> ๐ Energy reconstruction 19
NC NC e elastic c โ pr proton n iden dentification โข Take advantage of LArTPC PID strength, include hadron calorimetry of the final states in energy reconstruction . โข ๐ โ ๐ต๐ NC elastic cross-section help identify protons and their energy reconstruction NC elastic cross-section โข ultimate goal: โ๐ก . โข Signature: single short proton track (challenging to select) โข Employed BDT to identify protons 40 MeV โข Continue push to lower threshold proton energy threshold. Check out our public note for Example of selected NC proton more details: link from BNB data. ~60MeV proton 20
Ne Neutri trino oscillati tion Vs Cross-se section Charged particle multiplicity -> Systematic Uncertainty from nuclear effects CC0 ๐ -> ๐ Energy reconstruction, Systematic Uncertainty from nuclear effects 21
Recommend
More recommend