mi microboon oboone cr cross se secti tion ons s fr from
play

Mi MicroBooN oBooNE cr cross-se secti tion ons s fr from om - PowerPoint PPT Presentation

Mi MicroBooN oBooNE cr cross-se secti tion ons s fr from om an osc oscillati tion ons s persp specti tive NUFACT 2017 Xiao Luo, Yale University On behalf of MicroBooNE collaboration 1 Mi Micr croBooNE and and FNA NAL L ne


  1. Mi MicroBooN oBooNE cr cross-se secti tion ons s fr from om an osc oscillati tion ons s persp specti tive NUFACT 2017 Xiao Luo, Yale University On behalf of MicroBooNE collaboration 1

  2. Mi Micr croBooNE and and FNA NAL L ne neutr utrino ino be beam am LArTPC ~170 tons, surface detector Fermilab Collecting BNB Neutrino Data for 17 Booster Neutrino Beam months, ~ 6.5e20 POT collected. (BNB) ~ 170 k ๐œ‰ ๐œˆ CC interactions POT BNB Neutrinos: ๏ฟฝ ยต 6 -1 ๏ฟฝ /10 10 ยต ๏ฟฝ 2 e /50MeV/m โ€ข Mainly ๐œ‰ ๐œˆ ๏ฟฝ Detector e -2 10 upgrade โ€ข ๐œ‰ ๐œˆ energy (~700MeV) MicroBooNE -3 10 โ€ข <1% ๐œ‰ # contamination. ) -4 10 ๏ฟฝ ( ๏ฟฝ Oct 2015 May 2017 -5 10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Energy (GeV) 2

  3. LArTPC Working princi LAr ciple โ€“ sig signals als โ€ข Charged particles lose energy through Ar excitation ( scintillation light ) and z ionization ( drift electrons ) โ€ข Electrons drift towards anode wire planes under E field. โ€ข MicroBooNE LArTPC has two induction planes and one collection plane. Y โ€ข 3D reconstruction from drift-time (X) and wire-plane matching (Y,Z). โ€ข Number of electrons collected indicates the amount of energy loss from ionization. X 3

  4. LAr LArTPC Wo Working princi ciple Advantages: High Z target: large active volume -> lots of nu interactions. Finely segmented detector: โ€ข High spatial resolution: 3mm wire spacing -> mm vertex accuracy. โ€ข High calorimetric resolution: trace the charged particle ionization Strong particle identification power to tag โ€ข Tracks: muon, proton, charged pions, kaons, etc. โ€ข Showers: electron, gamma, pi0. โ€ข Cold electronics: Low noise -> low threshold. Challenges: โ€ข Cosmic background rejection: ionization chamber is slow (~2ms drift). Surface detector -> ~20 cosmic tracks in 4.8 ms readout window โ€ข High Z target: Nuclear effects affect nu cross-sections. โ€ข Non-uniform detector response: unresponsive channels, shorted wire region. 4

  5. From BNB trigger stream Birdโ€™s eye view ๐‹ MICROBOONE-NOTE-1002-PUB Time ticks (X) Collection wire number (Z) Run 3493 Event 41075, October 23 rd , 2015 5 75 cm

  6. Mi MicroBooNE us uses es thes these bea e beauti utiful ful i images es t to s study tudy neutr neutrino no os osci cillation on โ€ข Goal I : Understand the nature of the MiniBooNE low energy excess of EM events โ€ข Goal II : SBN (together with SBND and ICARUS) search for sterile neutrinos ( โˆ†๐‘› ( ~ 1 ๐‘“๐‘Š 2 ) with 5 ๐‰ sensitivity . โ€ข Goal III : Provide ๐ƒ -Ar cross-section measurements for DUNE. 6

  7. Go Goal al I: : go o after er Mi MiniBooNE NE Lo Low Ene Energy gy Ex Excess ss โ€ข MiniBooNE sees 2.8 ๐œ and 3.4 ๐œ event excess in ๐ƒ ๐‚ โŸถ ๐ƒ ๐’‡ and ๐ƒ ๐‚ โŸถ ๐ƒ ๐’‡ Significant background is from ๐œŒ 8 misid and ๐›ฟ from delta radiative โ€ข decay. โ€ข Detector can not distinguish e from ๐›ฟ . MiniBooNE MicroBooNE Common features Neutrino source: BNB Detector location: ~540 from the source Flux, L/E Differences Detector Cherenkov detector LAr TPC e/ ๐›ฟ separation NO e/ ๐›ฟ separation Yes Target Mineral oil (CH2) Liquid Argon (Ar) (806 tons) (180 tons) MicroBooNE primary goal: determine if the nature of the excess events are ๐œน like or e like. 7 Phys. Rev. Lett. 110, 161801 (2013)

  8. Go Goal al II II: : go o after er St Sterile Ne Neutri trino search - SBN SBN progr gram ICARUS SBND T600 MicroBooNE Fermilab Short Baseline Neutrino program: SBND ICARUS MicroBooNE Shared neutrino beam (BNB) reduce flux โ€ข LArTPC:110m, 112t uncertainty. LArTPC: 600m, 476t LArTPC: 470m, 87t All LArTPC detectors: reduce cross-section โ€ข uncertainty Goal: 5 ๐‰ sensitivity for sterile neutrino search at โˆ†๐’ ๐Ÿ‘ ~ 1eV 2 8

  9. Go Goal al III III: : go go after cr cross-se section n unc uncertainty in n Dune une โ€ข Precision measurements of neutrino oscillation parameters. โ€ข Neutrino Mass Hierarchy โ€ข CP violation: ๐œ€ >? Dune CDR arXiv:1512.06148 Dune Far detector is LArTPC. MicroBooNE can give direct cross-section constrain (particularly in low energy region) for Dune oscillation precision measurements. ~2X exposure 9

  10. Osci cillation signals ๐ƒ ๐‚ โ†’ ๐ƒ ๐‚ , , ๐ƒ ๐‚ โ†’ ๐ƒ ๐’‡ Signal selection ๐ƒ energy reco. Syst. Uncertainty โ€ข ๐ƒ ๐‚ CC inclusive โ€ข ๐ƒ ๐‚ CC inclusive โ€ข CC0 ๐† โ€ข CC ๐† ๐Ÿ โ€ข CC ๐† ๐Ÿ โ€ข Charged particle multiplicity, CC0 ๐† 10 โ€ข NC proton identification

  11. Cr Cross-se section n impa pact on n Osc scillation n ๐ƒ ๐‚ CC inclusive -> ๐ƒ signal selection, Systematic uncertainty 11

  12. ๐ƒ ๐‚ CC CC inc inclus lusiv ive cr cross ss-se sect ction First channel in MicroBooNE cross-section program: ๐œ‰ ๐œˆ CC inclusive: โ€ข Relatively simple event signature โ€“ tag long muon track as the product of the neutrino interaction. โ€ข Muon kinematics is insensitive to FSI. โ€ข A standard channel to compare with other neutrino experiments. Impact on oscillation: Signal selection of ๐œ‰ C disappearance channel. โ€ข ๐œ‰ ๐œˆ CC help to constrain the ๐œ‰ ๐‘“ rate. โ€ข ArgoNeuT is the only existing ๐ƒ -Ar cross-section 12

  13. ๐ƒ ๐‚ CC CC inc inclus lusiv ive 1000 No. of Events 900 Data: Beam On- Beam Off Simulation: 800 selected ฮฝ CC+bkgd ยต bkgd ฮฝ 700 ยต + bkgd Cosmic ฮฝ ฮฝ e e 600 NC bkgd 26% ๐ƒ ๐‚ ๐ƒ๐ƒ Cosmic bkgd 500 65% CC true vertex Out of FV bkgd ฮฝ ยต 400 MicroBooNE 300 preliminary Selection 200 100 โ€ข Purity: 65%, Efficiency: 30% 0 0 100 200 300 400 500 600 700 800 900 1000 Track Length (cm) โ€ข Improved analysis: โ€ข Scintillation light to improve the selection efficiency See Marco Del Tuttoโ€™s talk Tue. WG2 talk Check out MicroBooNE public note โ€ข Muon PID to reduce background MICROBOONE-NOTE-1010-PUB for details. Differential cross-section is on the way, stay tuned! 13 Note: efficiency = # of ๐ƒ ๐‚ ๐ƒ๐ƒ events after selection / All ๐ƒ ๐‚ ๐ƒ๐ƒ events inside of FV

  14. Ne Neutri trino oscillati tion Vs Cross-se section CC ๐† ๐Ÿ -> ๐ƒ signal selection, Systematic uncertainty, ๐ƒ Energy reconstruction 14

  15. ๐‘ซ๐‘ซ๐ƒ ๐’‡ select ction Exclusive QE like โ€œInclusiveโ€ search (1e + 1 p) (1 e + 0 ๐† ) ๐ƒ ๐’‡ ๐ƒ ๐’‡ p hadrons โ€ข Higher statistics โ€ข Simpler topology โ€ข Directly compatible to โ€ข Lower backgrounds MiniBooNE โ€ข Easier ๐‘ญ ๐ƒ โ€ข Less model dependency determination 15

  16. ๐‘ซ๐‘ซ๐ƒ ๐’‡ select ction Exclusive QE like โ€œInclusiveโ€ search ๐† ๐Ÿ misID (1e + 1 p) (1 e + 0 ๐† ) โˆ†โ†’ ๐‘ถ๐œน ๐ƒ ๐’‡ ๐ƒ ๐’‡ p hadrons Challenges: โ€ข Higher statistics โ€ข Simpler topology โ€ข Suppress photon backgrounds: NC ๐œŒ 8 , CC ๐œŒ 8 , resonant ๐œ‰ โ€ข Directly compatible to โ€ข Lower backgrounds interactions in dirt-> ๐›ฟ MiniBooNE โ€ข Easier ๐‘ญ ๐ƒ โ€ข e/ ๐œน separation โ€ข Less model dependency determination 16

  17. CC ๐† ๐Ÿ cr CC cross-se section measu surement Challenging channel: CC ๐›’ ๐Ÿ ๐๐›๐จ๐ž๐ฃ๐ž๐›๐ฎ๐Ÿ ๐Ÿ๐ฐ๐Ÿ๐จ๐ฎ โ€œShowerโ€ reconstruction is difficult especially in โ€ข the low energy range. Strategy: tagging muon and look for two โ€ข ๐œน showers The first CC ๐† ๐Ÿ cross-section result is on ๐œน the way, stay tuned! Impact on oscillation physics: โ€ข Easiest channel to provide large pi0 sample โ€ข Utilize the pi0 for shower automated reconstruction development. โ€ข Enable us to study photon background for the ๐œ‰ # appearance channel. 17

  18. PID PID โ€“ sh shower ers ( s (e/ e/ ๐œน ) ) Electron Vs Gamma dE/dx at start of the ๐ƒ ๐’‡ Signal ๐ƒ ๐’‡ Background shower? Gaps e-: 1MIP โ€ข ๐›ฟ : 1MIP if Compton โ€ข e - scattering, 2MIP if converting to e + e - No Gap Gaps from vertex? ๐›’ ๐Ÿ โ†’ ๐›…๐›… ๐›ฟ: yes โ€ข e - : no โ€ข BNB DATA : RUN 5360 EVENT 45. MARCH 8, 2016. BNB DATA : RUN 5536 EVENT 1612. MARCH 22, 2016. What Impact PID? โ€ข Require good vertexing. โ€ข Use both dE/dx and gap handles -> better e - tagging. Study the energy dependence of ๐›ฟ contamination. โ€ข Note: ArgoNeuT electron like sample has 20% photon contamination with higher energy NuMI beam. 18 ArgoNeuT PhysRevD.95.072005

  19. Ne Neutri trino oscillati tion Vs Cross-se section NC elastic -> ๐ƒ Energy reconstruction 19

  20. NC NC e elastic c โ€“ pr proton n iden dentification โ€ข Take advantage of LArTPC PID strength, include hadron calorimetry of the final states in energy reconstruction . โ€ข ๐œ‰ โˆ’ ๐ต๐‘  NC elastic cross-section help identify protons and their energy reconstruction NC elastic cross-section โ€ข ultimate goal: โˆ†๐‘ก . โ€ข Signature: single short proton track (challenging to select) โ€ข Employed BDT to identify protons 40 MeV โ€ข Continue push to lower threshold proton energy threshold. Check out our public note for Example of selected NC proton more details: link from BNB data. ~60MeV proton 20

  21. Ne Neutri trino oscillati tion Vs Cross-se section Charged particle multiplicity -> Systematic Uncertainty from nuclear effects CC0 ๐† -> ๐ƒ Energy reconstruction, Systematic Uncertainty from nuclear effects 21

Recommend


More recommend