measuring the quality of credit scoring models
play

Measuring the Quality of Credit Scoring Models Martin ez Dept. of - PowerPoint PPT Presentation

Measuring the Quality of Credit Scoring Models Martin ez Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University CSCC XI, Edinburgh August 2009 Content 1. Introduction 3 2. Good/bad client definition 4 3.


  1. Measuring the Quality of Credit Scoring Models Martin Ř ezá č Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University CSCC XI, Edinburgh August 2009

  2. Content 1. Introduction 3 2. Good/bad client definition 4 3. Measuring the quality 6 4. Indexes based on distribution function 7 5. Indexes based on density function 17 6. Some results for normally distributed scores 24 7. Conclusions 30 2/30

  3. Introduction � It is impossible to use scoring model effectively without knowing how good it is. � Usually one has several scoring models and needs to select just one. The best one. � Before measuring the quality of models one should know (among other things): � good/bad definition � expected reject rate 3/30

  4. Good/bad client definition � Good definition is the basic condition of effective scoring model. � The definition usually depends on: � days past due (DPD) � amount past due � time horizon � Generally we consider following types of client: � Good � Bad � Indeterminate � Insufficient � Excluded � Rejected. 4/30

  5. Good/bad client definition BAD Customer Fraud (first delayed payment, 90 DPD) Default Early default Accepted (2-4 delayed payment, 60 DPD) (60 or 90 DPD) Late default Rejected (5+ delayed payment, 60 DPD) Not default GOOD INDETERMINATE Insufficient 5/30

  6. Measuring the quality � Once the definition of good / bad client and client's score is available, it is possible to evaluate the quality of this score. If the score is an output of a predictive model (scoring function), then we evaluate the quality of this model. We can consider two basic types of quality indexes. First, indexes based on cumulative distribution function like � Kolmogorov-Smirnov statistics (KS) � Gini index � C-statistics � Lift. The second, indexes based on likelihood density function like � Mean difference (Mahalanobis distance) � Informational statistics/value (I Val ). 6/30

  7. Indexes based on distribution function n Number of good clients:  1 , client is good = D K  m Number of bad clients: 0 , otherwise .  n m = = p G , p B Proportions of good/bad clients: + + n m n m � Empirical distribution functions: � Kolmogorov-Smirnov statistics (KS) = ∑ 1 n ( ) = − ≤ ∧ = KS max F ( a ) F ( a ) F ( a ) I s a D 1 m , BAD n , GOOD n . GOOD i K [ ] n ∈ a L , H = i 1 1 m ( ) ∑ = ≤ ∧ = F ( a ) I s a D 0 m . BAD i K m = i 1 1 N [ ] ( ) ∑ ∈ = ≤ a L , H F ( a ) I s a N . ALL i N = 1 i  1 A is true ( ) = I A  0 otherwise  7/30

  8. Indexes based on distribution function � Lorenz curve (LC) = x F ( a ) m . BAD [ ] . = ∈ y F ( a ), a L , H n . GOOD � Gini index A = = Gini 2 A + A B ) ( ) + n m ( ∑ = − − ⋅ + Gini 1 F F F F m . BAD m . BAD − n . GOOD n . GOOD − k k 1 k 1 k = k 2 F . F . where ( ) is k-th vector value of empirical distribution function of bad (good) clients m BAD k n GOOD k 8/30

  9. Indexes based on distribution function � C-statistics: c + 1 Gini − = + = c stat A C 2 It represents the likelihood that randomly selected good client has higher score than randomly selected bad client, i.e. ( ) − = ≥ = ∧ = c stat P s s D 1 D 0 1 2 K K 1 2 9/30

  10. Indexes based on distribution function � Another possible indicator of the quality of scoring model can be cumulative Lift , which says, how many times, at a given level of rejection, is the scoring model better than random selection (random model). More precisely, the ratio indicates the proportion of bad [ ] clients with less than a score a , , to the proportion of bad ∈ a L , H clients in the general population. Formally, it can be expressed by: + + n m n m ( ) ( ) ∑ ∑ ≤ ∧ = ≤ ∧ = I s a Y 0 I s a Y 0 i i = = i 1 i 1 + + n m n m ∑ ( ) ∑ ( ) ≤ ≤ I s a I s a i i CumBadRate ( a ) = = = = = Lift ( a ) i 1 i 1 + n n m BadRate ( ) ∑ = I Y 0 N = i 1 + n m ( ) ∑ = ∨ = I Y 0 Y 1 = i 1 BadRate ( a ) = absLift ( a ) 10/30 BadRate

  11. Indexes based on distribution function 3,50 abs. Lift � Usually it is computed using table with 3,00 cum. Lift 2,50 numbers of all and bad clients in some Lift value 2,00 bands (deciles). 1,50 1,00 absolutely cumulatively decile # cleints # bad clients Bad rate abs. Lift # bad clients Bad rate cum. Lift 0,50 1 100 16 16,0% 3,20 16 16,0% 3,20 - 2 100 12 12,0% 2,40 28 14,0% 2,80 1 2 3 4 5 6 7 8 9 10 3 100 8 8,0% 1,60 36 12,0% 2,40 4 100 5 5,0% 1,00 41 10,3% 2,05 decile 5 100 3 3,0% 0,60 44 8,8% 1,76 6 100 2 2,0% 0,40 46 7,7% 1,53 1 7 100 1 1,0% 0,20 47 6,7% 1,34 8 100 1 1,0% 0,20 48 6,0% 1,20 Gini=0,55 0,8 9 100 1 1,0% 0,20 49 5,4% 1,09 10 100 1 1,0% 0,20 50 5,0% 1,00 0,6 All 1000 50 5,0% 0,4 0,2 Lornz curve Base line 0 0 0,2 0,4 0,6 0,8 1 11/30

  12. Indexes based on distribution function � When bad rates are not monotone: absolutely cumulatively � LC looks fine decile # cleints # bad clients Bad rate abs. Lift # bad clients Bad rate cum. Lift 1 100 8 8,0% 1,60 8 8,0% 1,60 � Gini is slightly lowered 2 100 12 12,0% 2,40 20 10,0% 2,00 3 100 16 16,0% 3,20 36 12,0% 2,40 � Lift looks strange 4 100 5 5,0% 1,00 41 10,3% 2,05 5 100 3 3,0% 0,60 44 8,8% 1,76 6 100 2 2,0% 0,40 46 7,7% 1,53 7 100 1 1,0% 0,20 47 6,7% 1,34 8 100 1 1,0% 0,20 48 6,0% 1,20 9 100 1 1,0% 0,20 49 5,4% 1,09 10 100 1 1,0% 0,20 50 5,0% 1,00 All 1000 50 5,0% 3,50 1 abs. Lift 3,00 cum. Lift Gini=0,48 0,8 2,50 Lift value 0,6 2,00 1,50 0,4 1,00 0,2 Lornz curve 0,50 Base line - 0 1 2 3 4 5 6 7 8 9 10 0 0,2 0,4 0,6 0,8 1 12/30 decile

  13. Indexes based on distribution function � When score is reversed, we obtain reversed figures. 3,50 abs. Lift absolutely cumulatively decile # cleints # bad clients Bad rate abs. Lift # bad clients Bad rate cum. Lift 3,00 cum. Lift 1 100 16 16,0% 3,20 16 16,0% 3,20 2 100 12 12,0% 2,40 28 14,0% 2,80 2,50 3 100 8 8,0% 1,60 36 12,0% 2,40 Lift value 4 100 5 5,0% 1,00 41 10,3% 2,05 2,00 5 100 3 3,0% 0,60 44 8,8% 1,76 6 100 2 2,0% 0,40 46 7,7% 1,53 1,50 7 100 1 1,0% 0,20 47 6,7% 1,34 8 100 1 1,0% 0,20 48 6,0% 1,20 1,00 9 100 1 1,0% 0,20 49 5,4% 1,09 10 100 1 1,0% 0,20 50 5,0% 1,00 0,50 All 1000 50 5,0% - 1 2 3 4 5 6 7 8 9 10 decile absolutely cumulatively decile # cleints # bad clients Bad rate abs. Lift # bad clients Bad rate cum. Lift 1 100 1 1,0% 0,20 1 1,0% 0,20 1 2 100 1 1,0% 0,20 2 1,0% 0,20 Gini= - 0,55 3 100 1 1,0% 0,20 3 1,0% 0,20 0,8 4 100 1 1,0% 0,20 4 1,0% 0,20 5 100 2 2,0% 0,40 6 1,2% 0,24 0,6 6 100 3 3,0% 0,60 9 1,5% 0,30 7 100 5 5,0% 1,00 14 2,0% 0,40 0,4 8 100 8 8,0% 1,60 22 2,8% 0,55 9 100 12 12,0% 2,40 34 3,8% 0,76 0,2 10 100 16 16,0% 3,20 50 5,0% 1,00 Lornz curve Base line All 1000 50 5,0% 0 13/30 0 0,2 0,4 0,6 0,8 1

  14. Indexes based on distribution function � The Gini is not enough!!! � SC 1: 1 1 0,9 good Gini= 0,42 decile # cleints # bad clients Bad rate bad 0,8 0,8 1 100 35 35,0% 0,7 2 100 16 16,0% 0,6 0,6 3 100 8 8,0% 0,5 4 100 8 8,0% 0,4 5 100 7 7,0% 0,4 6 100 6 6,0% 0,3 K-S = 0.34 7 100 6 6,0% 0,2 0,2 Lornz curve 8 100 5 5,0% 0,1 Base line 9 100 5 5,0% 0 0 10 100 4 4,0% 0 0,2 0,4 0,6 0,8 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 All 1000 100 10,0% � SC 2: 1 1 0,9 good Gini = 0.42 decile # cleints # bad clients Bad rate bad 0,8 0,8 1 100 20 20,0% 0,7 2 100 18 18,0% 0,6 0,6 3 100 17 17,0% 0,5 4 100 15 15,0% 0,4 5 100 12 12,0% 0,4 6 100 6 6,0% 0,3 7 100 4 4,0% K-S = 0.36 0,2 0,2 Lornz curve 8 100 3 3,0% Base line 0,1 9 100 3 3,0% 0 0 10 100 2 2,0% 0 0,2 0,4 0,6 0,8 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 14/30 All 1000 100 10,0%

  15. Indexes based on distribution function � SC 1: � SC 2: 2,50 4,00 abs. Lift abs. Lift 3,50 cum. Lift cum. Lift 2,00 3,00 2,50 1,50 Lift value Lift value 2,00 1,00 1,50 1,00 0,50 0,50 - - 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 decile decile Lift 20% = 2.55 > Lift 20% = 1.90 Lift 50% = 1.48 < Lift 50% = 1.64 SC 2 is better if reject rate is expected around 50%. SC 1 is much more better if reject rate is expected by 20%. 15/30

  16. Indexes based on distribution function � Lift can be expressed and computed by formulae: F ( a ) [ ] ∈ = n . BAD a L , H Lift ( a ) F ( a ) N . ALL − ( ) 1 F ( F ( q )) 1 − = = 1 Lift n . BAD N . ALL F F ( q ) q − n . BAD N . ALL 1 F ( F ( q )) q N . ALL N . ALL { } − 1 = ∈ ≥ F ( q ) min a [ L , H ], F ( a ) q N . ALL N . ALL ( ) . = ⋅ − 1 Lift 10 F F ( 0 . 1 ) 10 % n . BAD N . ALL 16/30

Recommend


More recommend