measurement of the zz production cross section in pp
play

Measurement of the ZZ production cross section in pp collisions at s - PowerPoint PPT Presentation

Measurement of the ZZ production cross section in pp collisions at s = 13 TeV with the ATLAS detector Stefan Richter (University College London, CERN) on behalf of the ATLAS Collaboration XXII Epiphany Conference Cracow, Poland 79


  1. Measurement of the ZZ production cross section in pp collisions at √ s = 13 TeV with the ATLAS detector Stefan Richter (University College London, CERN) on behalf of the ATLAS Collaboration XXII Epiphany Conference · Cracow, Poland · 7–9 January 2016

  2. In short Measure fiducial inclusive cross section for ZZ at √ s = 13 TeV in the four-lepton channel, using 3 . 2 fb − 1 of data ℓ = e , µ Also extrapolate to ‘total’ phase space and all Z boson decays Leptonically decaying Z is not strictly separable from γ ∗ → “Z” ≡ Z / γ ∗ with mass between 66–116 GeV (CMS uses 60–120 GeV) Paper: [1512.05314] (submitted to PRL) 2 Stefan Richter for ATLAS: ZZ @ 13 TeV

  3. ZZ production at the LHC q g Z Z g q Z Z Predicted four-lepton mass spectrum at 8 TeV [1509.07844]: 3 Stefan Richter for ATLAS: ZZ @ 13 TeV

  4. Why measure ZZ? Standard Model test at 13 TeV Appears in Higgs and new-physics analysis background and/or sidebands Limits on anomalous gauge couplings: Z / γ ∗ red blob vertex forbidden in SM W ± Towards vector boson scattering: W W ∓ 4 Stefan Richter for ATLAS: ZZ @ 13 TeV

  5. ZZ → 4 ℓ channel Advantage: extremely clean • tiny background • excellent Z mass resolution Disadvantage: small cross section • 0 . 45% × 15 . 6 pb (NNLO) ≈ 70 fb 5 Stefan Richter for ATLAS: ZZ @ 13 TeV

  6. Number of events Predicted number of passing signal selection background events σ pp → ZZ = N data − N background L BR ZZ → 4 ` A ZZ C ZZ Integrated luminosity Leptonic Correction for Extrapolation from branching detector effects measurement to ratio full phase space

  7. Fiducial lepton definition Generator-level Prompt final-state muons and electrons ‘Dressing’ to account for Bremsstrahlung: add four-momenta (∆ η ) 2 + (∆ ϕ ) 2 = 0 . 1 � of prompt photons within ∆ R = p ⊥ > 20 GeV | η | < 2 . 7 7 Stefan Richter for ATLAS: ZZ @ 13 TeV

  8. Lepton selection Reconstructed Lepton identification Electrons: electromagnetic calorimeter deposits + tracking info Muons: tracking and/or muon spectrometer info, calorimeter signature consistent with muon p ⊥ > 20 GeV | η | < 2 . 47 (electrons) or 2 . 7 (muons) Associated with primary vertex Transverse impact parameter significance | d 0 / σ ( d 0 ) | < 3 Longitudinal impact parameter | z 0 sin θ | < 0 . 5 mm ( z 0 w.r.t. primary vertex) Isolated from other tracks/energy deposits 8 Stefan Richter for ATLAS: ZZ @ 13 TeV

  9. Event selection Same for fiducial and reconstructed except for some reconstruction quality requirements Exactly 4 leptons in 2 same-flavour, opposite-charge pairs ∆ R ℓℓ > 0 . 2 If 4 same-flavour leptons, form pairs such that | m 12 − m Z | + | m 34 − m Z | is minimised Z candidate selection: 66 GeV < m 12 , m 34 < 116 GeV In reconstructed: single-muon or dielectron trigger matched by selected leptons, hard-scattering vertex, and at most 1 muon without inner-detector or muon-system track ( standalone , calorimeter-tagged ) 9 Stefan Richter for ATLAS: ZZ @ 13 TeV

  10. Considered backgrounds • Four genuine prompt leptons • ZZ → [4 τ , 2 τ 2 ℓ ] → 4 ℓ + neutrinos • ZZZ , WZZ , WWZ • t¯ tZ • — from simulation • 1–2 nonprompt or misidentified leptons • {Z, WZ, WW} + jets • t ¯ t • ... • — data-driven estimate 10 Stefan Richter for ATLAS: ZZ @ 13 TeV

  11. Background composition (yields) Background process Expected events ZZ → 2 ℓ 2 τ , 4 τ 0 . 07 ± 0 . 02 ZZZ, WZZ, WWZ 0 . 17 ± 0 . 05 t ¯ tZ 0 . 30 ± 0 . 09 0 . 09 + 1 . 08 1–2 misidentified leptons* − 0 . 04 0 . 62 + 1 . 08 Total − 0 . 11 * Derived using data-driven method 11 Stefan Richter for ATLAS: ZZ @ 13 TeV

  12. Yields Channel 4e 2e2µ 4µ Total 4 ℓ Observed 15 30 18 63 0 . 25 +0 . 40 0 . 17 +1 . 00 0 . 62 +1 . 08 Expected background 0 . 20 ± 0 . 05 − 0 . 05 − 0 . 04 − 0 . 11 12 Stefan Richter for ATLAS: ZZ @ 13 TeV

  13. Correction factor C ZZ Corrects measured cross section for detector effects C ZZ ≡ selected reconstructed events fiducial events Determined using simulated signal samples 4e 2e2µ 4µ C ZZ 0 . 55 ± 0 . 02 0 . 63 ± 0 . 02 0 . 81 ± 0 . 03 Relative uncertainties in %: Source 4e 2e2µ 4µ Statistical 0 . 7 0 . 5 0 . 5 Theoretical 2 . 5 2 . 5 2 . 5 Experimental efficiencies 2 . 3 2 . 2 2 . 0 Momentum scales and resolutions 0 . 4 0 . 2 0 . 1 Total 3 . 5 3 . 3 3 . 2 13 Stefan Richter for ATLAS: ZZ @ 13 TeV

  14. Extrapolation factor A ZZ Extrapolates fiducial cross section to total phase space A ZZ ≡ fiducial events on-shell events ≈ 0 . 39 ± 0 . 2 Determined using simulated signal samples Relative uncertainties in %: Source Uncertainty Statistical 0.9 Generator 3.4 Parton shower 0.8 PDFs 0.8 QCD scales 0.3 Total 3.7 14 Stefan Richter for ATLAS: ZZ @ 13 TeV

  15. Cross section extraction Maximum-likelihood fits: • Fiducial per-channel cross sections • Fiducial combined cross section • Total combined cross section Signal and background yields treated as Poisson variables Systematic uncertainties treated as Gaussian nuissance parameters 15 Stefan Richter for ATLAS: ZZ @ 13 TeV

  16. Signal kinematics

  17. Dilepton masses (before on-shell requirement) 180 Z candidate mass [GeV] ATLAS -1 160 s = 13 TeV, 3.2 fb Data → 140 ZZ 4l +1.08 Expected background: 0.62 -0.11 120 100 80 T,ll 60 p Leading- 40 20 20 40 60 80 100 120 140 160 180 Subleading- p Z candidate mass [GeV] T,ll 17 Stefan Richter for ATLAS: ZZ @ 13 TeV

  18. Four-lepton mass 18 Events / 20 GeV ATLAS 16 -1 s = 13 TeV, 3.2 fb 14 Data → → q q ZZ 4l 12 → → gg ZZ 4l 10 Prediction uncertainty +1.08 Expected background: 0.62 8 -0.11 6 4 2 0 200 300 400 500 600 700 Mass of four-lepton system m [GeV] 4l 18 Stefan Richter for ATLAS: ZZ @ 13 TeV

  19. Four-lepton p ⊥ 25 Events / 10 GeV ATLAS -1 s = 13 TeV, 3.2 fb 20 Data → → q q ZZ 4l → → gg ZZ 4l 15 Prediction uncertainty +1.08 Expected background: 0.62 -0.11 10 5 0 0 50 100 150 200 250 Transverse momentum of four-lepton system p [GeV] T,4l 19 Stefan Richter for ATLAS: ZZ @ 13 TeV

  20. Four-lepton rapidity 14 Events / 0.2 ATLAS Data → → 12 -1 q q ZZ 4l s = 13 TeV, 3.2 fb → → gg ZZ 4l 10 Prediction uncertainty +1.08 Expected background: 0.62 -0.11 8 6 4 2 0 − − − 3 2 1 0 1 2 3 Rapidity of four-lepton system y 4l 20 Stefan Richter for ATLAS: ZZ @ 13 TeV

  21. Results

  22. Fiducial and total cross sections Measurement NNLO prediction σ fid 8.4 +2 . 4 − 2 . 0 (stat.) +0 . 4 − 0 . 2 (syst.) +0 . 5 6 . 9 +0 . 2 − 0 . 3 (lumi.) fb − 0 . 2 fb ZZ → e + e − e + e − σ fid 14.7 +2 . 9 − 2 . 5 (stat.) +0 . 6 − 0 . 4 (syst.) +0 . 9 13 . 6 +0 . 4 − 0 . 6 (lumi.) fb − 0 . 4 fb ZZ → e + e − µ + µ − σ fid 6.8 +1 . 8 − 1 . 5 (stat.) +0 . 3 − 0 . 3 (syst.) +0 . 4 6 . 9 +0 . 2 − 0 . 3 (lumi.) fb − 0 . 2 fb ZZ → µ + µ − µ + µ − σ fid 29.7 +3 . 9 − 3 . 6 (stat.) +1 . 0 − 0 . 8 (syst.) +1 . 7 27 . 4 +0 . 9 − 1 . 3 (lumi.) fb − 0 . 8 fb ZZ → ℓ + ℓ − ℓ ′ + ℓ ′− σ tot 16.7 +2 . 2 − 2 . 0 (stat.) +0 . 9 − 0 . 7 (syst.) +1 . 0 15 . 6 +0 . 4 − 0 . 7 (lumi.) pb − 0 . 4 pb ZZ Theory prediction: [1507.06257] Fiducial cross-section predictions include fiducial acceptance correction for final-state photon radiation (lowers by ∼ 4%) 22 Stefan Richter for ATLAS: ZZ @ 13 TeV

  23. Theory comparison (fiducial) → → pp ZZ 4l ATLAS Fiducial 4e -1 s = 13 TeV, 3.2 fb Measurement µ 2 e2 Tot. uncertainty Stat. uncertainty α 2 prediction s 4 µ ± σ 1 ± σ 2 Combined Theory: PLB 750 (2015) 407 CT10 NNLO 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 σ σ / data theory 23 Stefan Richter for ATLAS: ZZ @ 13 TeV

  24. Total cross section vs. √ s 24 [pb] MCFM, CT14 NLO ATLAS 22 ZZ (p p ) LHC Data 2015 ( s =13 TeV) 20 ZZ (pp) ZZ tot → -1 ATLAS ZZ llll (m 66-116 GeV) 3.2 fb σ ll 18 LHC Data 2012 ( s =8 TeV) → -1 CMS ZZ llll (m 66-116 GeV) 19.6 fb 16 ll LHC Data 2011 ( s =7 TeV) → ν ν -1 ATLAS ZZ ll(ll/ ) (m 66-116 GeV) 4.6 fb 14 ll → -1 CMS ZZ llll (m 60-120 GeV) 5.0 fb ll 12 Tevatron Data ( s =1.96 TeV) → ν ν -1 CDF ZZ ll(ll/ ) (on-shell) 9.7 fb → ν ν -1 D0 ZZ ll(ll/ ) (m 60-120 GeV) 8.6 fb 10 ll 8 6 Prediction is NLO 4 NNLO not yet ready 2 0 0 2 4 6 8 10 12 14 s [TeV] 24 Stefan Richter for ATLAS: ZZ @ 13 TeV

  25. Conclusions ZZ production cross section measured at √ s = 13 TeV Total uncertainty ca. 15%, statistically dominated Agreement with NNLO Standard Model prediction Starting to be sensitive to gg-initiated loop-induced production! Future goals with more data: • differential cross sections • limits on anomalous gauge couplings • ... Thank you! Questions? 25 Stefan Richter for ATLAS: ZZ @ 13 TeV

  26. Backup

  27. Candidate event (dilepton masses 95 and 88 GeV)

  28. Theory considerations Double parton scattering ( ∼ 1%) included in measurement but not in prediction NLO corrections to loop-induced process could increase prediction by ∼ 4–5% [1509.06734] NLO- α electroweak corrections could decrease prediction by ∼ 7–8% [1305.5402], [Biedermann, Denner, Dittmaier, Hofer, Jäger; to be submitted] 28 Stefan Richter for ATLAS: ZZ @ 13 TeV

Recommend


More recommend