Me Metho thods ds of of Sol Solutio ution n of of fi first rst or order der o ode de
Let M (x ,y) dx + N(x ,y) dy = 0 Exact differential equation M N Then y x Let u = u(x ,y ) =c be a solution Then u u 𝝐𝒗 𝝐𝒗 𝝐𝒚 𝒆𝒚 + 𝝐𝒛 𝒆𝒛 = 𝟏 M , N du= x y Then 2 2 M N M u N u , y y x x x y y x
(4) Exact Differential Equations: This type takes the form: M x y dx ( , ) N x y dy ( , ) 0 M N Such that: y x The solution function will take the form: f ( x , y ) c f ( x , y ) M ( x , y ) dx h ( y ) c f y N ( x , y )
Example 2 2 Solve the DE 2 y x 3 dx 2 yx 7 dy 0 Solution M N 2 2 4 yx N 2 yx 7 M 2 y x 3 y x 2 ( , ) (2 3) ( ) f x y y x dx h y dh y ( ) 2 2 2 f 2 yx f x y ( , ) y x 3 x h y ( ) y dy dh y ( ) h y ( ) 7 y 7 dy 2 2 f ( x , y ) y x 3 x 7 y c
Example 3 2 2 Solve the DE y y sin x x dx 3 xy 2 y cos x dy 0 Solution M N 2 3 y 2 sin y x y x 2 f x y ( , ) (3 xy 2 cos ) y x dy g x ( ) dg x ( ) 3 2 3 2 f y y sin x f x y ( , ) xy y cos x g x ( ) x dx dg x ( ) 2 g x ( ) 1/ 2 x x dx 1 3 2 2 f x y ( , ) xy y cos x x c 2
Solve the differential eqns 1 ln ydx xy dy =0 2 3 (3x sin y) dx (x cosy)dy 0 y y e dx xe dy 0 x x 1 e ln ydx e y dy 0 2 2 2xydx (x 3y )dy 0 2 2xy dx (x cosy)dy 0 3 2 2 2xy dx (3x y cosy)dy 0
(5) DE ’ s Reducible to Exact: M x y dx ( , ) N x y dy ( , ) 0 This type takes the form: M N Such that: y x Sometimes there exist a suitable function called an integrating factor such that, M x y dx ( , ) N x y dy ( , ) 0 which is exact DE.
( , ) x y The problem now is: how to obtain Case (I): 1 M N A x dx ( ) ( ) x e A x ( ) N y x Case (II): B y dy ( ) 1 M N ( ) y e B y ( ) M y x
Example 2 2 Solve the DE 3 2 0 y xy y dx x xy x dy Solution 2 2 N x 3 xy 2 x M y xy y N M 2 x 3 y 2 2 y x 1 x y x y 1 1 M N 1 B y ( ) M y x y x y 1 y 1 dy B y dy ( ) ln y y ( ) y e e e y
2 2 y xy y dx x 3 xy 2 x dy 0 3 2 2 2 2 y xy y dx yx 3 xy 2 xy dy 0 M N 3 2 2 f x y ( , ) ( y xy y ) dx h y ( ) 1 3 2 2 2 f x y ( , ) xy x y xy h y ( ) 2 dh y ( ) 2 2 f 3 xy x y 2 xy y dy dh y ( ) 0 ( ) h y c dy 1 3 2 2 2 f x y ( , ) xy x y xy c 2
Example 2 3 Solve the DE cos sin cos 1 0 x x dy y x dx Solution 2 N cos x sin x 3 M y cos x 1 M N 3 3 2 cos x cos 2cos sin x x x y x 2 1 M N 2cos sin x x 2sin x A x ( ) 2 N y x cos x cos x sin x 2 1 sin x dx ln 2 1 2ln cos x 2 cos x cos x ( ) x e e e sec x 2 cos x
2 3 cos x sin x dy y cos x 1 dx 0 2 sin x dy y cos x sec x dx 0 f x y ( , ) (sin ) x dy g x ( ) dg x ( ) f x y ( , ) y sin x g x ( ) f y cos x x dx dg x ( ) 2 sec ( ) tan x g x x c dx f x y ( , ) y sin x tan x c
(6) Linear DE ’ s: The general first order linear DE takes the form: dy dx p x y ( ) q x ( ) Solution steps: p x dx ( ) ( ) x e 1 y x ( ) ( ) ( ) x q x dx c ( ) x
Example dy dx Solve the DE cos x y sin x 1 Solution dy sin x 1 y cos cos dx x x 1 sin x q x ( ) p x ( ) cos x cos x 1 sin x dx ln 1 lncos x cos x cos x ( ) x e e e sec x cos x 1 1 tan y sec x x c y ( x ) sec x dx c sec x cos x
(7) DE ’ s Reducible to Linear (Bernoulli DE): The general form of Bernoulli DE is: dy dx ( ) n p x y ( ) q x y y 1 n u du dx (1 n p x u ) ( ) (1 n q x ) ( )
Example dy dx 2 Solve the DE x 4 y x y Solution 1 4 dy 2 y x y 1 1 n 2 1/2 u ( x ) x x dx c dx x 2 x 2 q x p x 1 2 1 du 2 1 u x ( ) x ln x c 2 u x le t u y 2 dx x 2 2 1 2 ln dx 1 2ln x x x ( ) x e e e 2 x
Solve 2 x ( y 1 ) dx ydy 0 1. 2. sin x. sin y dx + cos x cos y dy 2 x 2 x ye dx ( 4 e ) dy 3. 4. x cos y dx + tan y dy = 0 2 3 tan y . y sin x 0 5. 2 y 1 y 6.
Solve
Recommend
More recommend