. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang February 12th, 2013 Hyun Min Kang Maximum Likelihood Estimator Lecture 10 Biostatistics 602 - Statistical Inference . Summary . . MLE Recap . . . . . . . . . 1 / 20 . . . . . . . . . . . . .
. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang 5 How can you find an MLE? . . 4 What is a maximum likelihood estimator (MLE)? . . estimator? 3 What are advantages and disadvantages of method of moment . . 2 What is a method of moment estimator? . . 1 What is a point estimator, and a point estimate? . . Last Lecture Summary . MLE Recap . . . . . . . . . 2 / 20 . . . . . . . . . . . . .
. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang 5 How can you find an MLE? . . 4 What is a maximum likelihood estimator (MLE)? . . estimator? 3 What are advantages and disadvantages of method of moment . . 2 What is a method of moment estimator? . . 1 What is a point estimator, and a point estimate? . . Last Lecture Summary . MLE Recap . . . . . . . . . 2 / 20 . . . . . . . . . . . . .
. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang 5 How can you find an MLE? . . 4 What is a maximum likelihood estimator (MLE)? . . estimator? 3 What are advantages and disadvantages of method of moment . . 2 What is a method of moment estimator? . . 1 What is a point estimator, and a point estimate? . . Last Lecture Summary . MLE Recap . . . . . . . . . 2 / 20 . . . . . . . . . . . . .
. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang 5 How can you find an MLE? . . 4 What is a maximum likelihood estimator (MLE)? . . estimator? 3 What are advantages and disadvantages of method of moment . . 2 What is a method of moment estimator? . . 1 What is a point estimator, and a point estimate? . . Last Lecture Summary . MLE Recap . . . . . . . . . 2 / 20 . . . . . . . . . . . . .
. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang 5 How can you find an MLE? . . 4 What is a maximum likelihood estimator (MLE)? . . estimator? 3 What are advantages and disadvantages of method of moment . . 2 What is a method of moment estimator? . . 1 What is a point estimator, and a point estimate? . . Last Lecture Summary . MLE Recap . . . . . . . . . 2 / 20 . . . . . . . . . . . . .
. n February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang X k n . . . n . 3 / 20 MLE . Recap - Method of Moment Estimator . Summary . . . . . . . . Recap . . . . . . . . . . . . . • Point Estimation - Estimate θ or τ ( θ ) . • Method of Moment m 1 = 1 ∑ X i = E X = µ 1 m 2 = 1 i = E X 2 = µ 2 ∑ X 2 m k = 1 i = E X k = µ k ∑
• Easy to implement • Easy to understand • Estimators can be improved; use as initial value to get other • No guarantee that the estimator will fall into the range of valid . . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang parameter space. estimators i n n 4 / 20 . . . i.i.d. Recap - Example of Method of Moment Estimator . . . . . . . Summary Recap MLE . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ = X ˆ σ 2 = E X 2 = 1 µ 2 + ˆ ∑ X 2 ˆ i =1 σ 2 = ∑ ( X i − X ) 2 / n ˆ
• Easy to understand • Estimators can be improved; use as initial value to get other • No guarantee that the estimator will fall into the range of valid . . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang parameter space. estimators i n n 4 / 20 i.i.d. MLE . . Recap - Example of Method of Moment Estimator Summary . . . . . . . . Recap . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ = X ˆ σ 2 = E X 2 = 1 µ 2 + ˆ ∑ X 2 ˆ i =1 σ 2 = ∑ ( X i − X ) 2 / n ˆ • Easy to implement
• Estimators can be improved; use as initial value to get other • No guarantee that the estimator will fall into the range of valid . i.i.d. February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang parameter space. estimators i n n . 4 / 20 . . Recap - Example of Method of Moment Estimator Summary . . . . . . . . MLE Recap . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ = X ˆ σ 2 = E X 2 = 1 µ 2 + ˆ ∑ X 2 ˆ i =1 σ 2 = ∑ ( X i − X ) 2 / n ˆ • Easy to implement • Easy to understand
• No guarantee that the estimator will fall into the range of valid . i.i.d. February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang parameter space. estimators i n n . 4 / 20 Recap . . Summary . MLE . . . . . . . Recap - Example of Method of Moment Estimator . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ = X ˆ σ 2 = E X 2 = 1 µ 2 + ˆ ∑ X 2 ˆ i =1 σ 2 = ∑ ( X i − X ) 2 / n ˆ • Easy to implement • Easy to understand • Estimators can be improved; use as initial value to get other
. i.i.d. February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang parameter space. estimators i n n . 4 / 20 Recap - Example of Method of Moment Estimator MLE . . . . . . . . . Recap . Summary . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ = X ˆ σ 2 = E X 2 = 1 µ 2 + ˆ ∑ X 2 ˆ i =1 σ 2 = ∑ ( X i − X ) 2 / n ˆ • Easy to implement • Easy to understand • Estimators can be improved; use as initial value to get other • No guarantee that the estimator will fall into the range of valid
. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang is called the likelihood function. f x x defined by L x is observed, the function of Given that X n i.i.d. . 5 / 20 . Definition . . . . . . . . . Recap MLE . Summary Recap - Likelihood Function . . . . . . . . . . . . . . X 1 , · · · , X n ∼ f X ( x | θ ) . The join distribution of X = ( X 1 , · · · , X n ) is ∏ f X ( x | θ ) = f X ( x i | θ ) i =1
. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang is called the likelihood function. n i.i.d. . . Definition . Recap - Likelihood Function Summary . . . . . . . . . Recap MLE . 5 / 20 . . . . . . . . . . . . . X 1 , · · · , X n ∼ f X ( x | θ ) . The join distribution of X = ( X 1 , · · · , X n ) is ∏ f X ( x | θ ) = f X ( x i | θ ) i =1 Given that X = x is observed, the function of θ defined by L ( θ | x ) = f ( x | θ )
. . February 12th, 2013 Biostatistics 602 - Lecture 10 Hyun Min Kang i.i.d. . Summary Recap - Example Likelihood Function MLE Recap . . . . . . . . . 6 / 20 . . . . . . . . . . . . . • X 1 , X 2 , X 3 , X 4 ∼ Bernoulli ( p ) , 0 < p < 1 . • x = (1 , 1 , 1 , 1) T • Intuitively, it is more likely that p is larger than smaller. • L ( p | x ) = f ( x | p ) = ∏ 4 i =1 p x i (1 − p ) 1 − x i = p 4 .
• For one-dimensional parameter, negative second order derivative • For two-dimensional parameter, suppose L • Check boundary points to see whether boundary gives global maximum. • Use numerical methods • Or perform direct maximization, using inequalities, or properties of L is the likelihood function. Then we need to show (a) L or February 12th, 2013 . Biostatistics 602 - Lecture 10 implies local maximum. If the function is NOT differentiable with respect to . the function. Hyun Min Kang (b) Determinant of second-order derivative is positive . . 2 Check second-order derivative to check local maximum. . . . . . . . . . Recap MLE . Summary How do we find MLE? . . 1 Find candidates that makes first order derivative to be zero . . 7 / 20 . . . . . . . . . . . . . If the function is differentiable with respect to θ ,
• For one-dimensional parameter, negative second order derivative • For two-dimensional parameter, suppose L • Check boundary points to see whether boundary gives global maximum. • Use numerical methods • Or perform direct maximization, using inequalities, or properties of L is the likelihood function. Then we need to show (a) L or February 12th, 2013 . Biostatistics 602 - Lecture 10 implies local maximum. If the function is NOT differentiable with respect to . the function. Hyun Min Kang (b) Determinant of second-order derivative is positive . . 2 Check second-order derivative to check local maximum. . . . . . . . . . Recap MLE . Summary How do we find MLE? . . 1 Find candidates that makes first order derivative to be zero . . 7 / 20 . . . . . . . . . . . . . If the function is differentiable with respect to θ ,
• For one-dimensional parameter, negative second order derivative • For two-dimensional parameter, suppose L • Check boundary points to see whether boundary gives global maximum. • Use numerical methods • Or perform direct maximization, using inequalities, or properties of L is the likelihood function. Then we need to show (a) L or February 12th, 2013 . Biostatistics 602 - Lecture 10 implies local maximum. If the function is NOT differentiable with respect to . the function. Hyun Min Kang (b) Determinant of second-order derivative is positive . . 2 Check second-order derivative to check local maximum. . . . . . . . . . Recap MLE . Summary How do we find MLE? . . 1 Find candidates that makes first order derivative to be zero . . 7 / 20 . . . . . . . . . . . . . If the function is differentiable with respect to θ ,
Recommend
More recommend