maximizing ink in partial edge drawings of k plane graphs
play

Maximizing Ink in Partial Edge Drawings of k -plane Graphs Matthias - PowerPoint PPT Presentation

Maximizing Ink in Partial Edge Drawings of k -plane Graphs Matthias Hummel, Fabian Klute, Soeren Nickel, Martin N ollenburg GD 2019 September 19, 2019 Partial Edge Drawings (PED) How to draw non-planar graphs? Just hide the edge crossings!


  1. Maximizing Ink in Partial Edge Drawings of k -plane Graphs Matthias Hummel, Fabian Klute, Soeren Nickel, Martin N¨ ollenburg GD 2019 · September 19, 2019

  2. Partial Edge Drawings (PED) How to draw non-planar graphs? Just hide the edge crossings! [Becker et al. TVCG’95], [Bruckdorfer, Kaufmann FUN’12] Input: Output: Straight-line “Crossing-free” graph drawing partial edge with crossings drawing (PED) 1 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  3. Partial Edge Drawings (PED) How to draw non-planar graphs? Just hide the edge crossings! [Becker et al. TVCG’95], [Bruckdorfer, Kaufmann FUN’12] Input: Output: Straight-line “Crossing-free” graph drawing partial edge with crossings drawing (PED) Properties: edges are drawn partially with middle part removed pairs of opposing stubs relies on closure and continuation principles in Gestalt theory user studies confirmed that PEDs reduce clutter and remain readable for long enough stubs [Bruckdorfer et al. GD’15], [Burch et al. GD’11] 1 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  4. Symmetric Partial Edge Drawings (SPED) Input drawing PED symmetric PED ( S PED) 2 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  5. Symmetric Partial Edge Drawings (SPED) Input drawing PED symmetric PED ( S PED) SPED: both stubs of an edge have the same length identical stub lengths can facilitate finding adjacencies 2 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  6. Symmetric Partial Edge Drawings (SPED) Input drawing PED symmetric PED ( S PED) SPED: both stubs of an edge have the same length identical stub lengths can facilitate finding adjacencies Optimization problem: maximize total stub length/drawn ink → MaxPED and MaxSPED show as much information as possible without crossings 2 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  7. Overview of Results Given: k -plane ⋆ straight-line drawing Γ Find: maximum-ink (S)PED of Γ 3 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  8. Overview of Results Given: k -plane ⋆ straight-line drawing Γ Find: maximum-ink (S)PED of Γ ex: k = 2 ⋆ : k -plane drawing: every edge crossed by at most k other edges 3 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  9. Overview of Results Given: k -plane ⋆ straight-line drawing Γ Find: maximum-ink (S)PED of Γ ex: k = 2 ⋆ : k -plane drawing: every edge crossed by at most k other edges k = 2 k = 3 k ≥ 4 arbitrary k NP-hard MaxSPED [Bruckdorfer PhD’15] O ( n log n ) [Bruckdorfer et al. JGAA’17] MaxPED 3 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  10. Overview of Results Given: k -plane ⋆ straight-line drawing Γ Find: maximum-ink (S)PED of Γ ex: k = 2 ⋆ : k -plane drawing: every edge crossed by at most k other edges k = 2 k = 3 k ≥ 4 arbitrary k NP-hard MaxSPED NP-hard [Bruckdorfer PhD’15] O ( n log n ) [Bruckdorfer et al. JGAA’17] MaxPED NP-hard 3 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  11. Overview of Results Given: k -plane ⋆ straight-line drawing Γ Find: maximum-ink (S)PED of Γ ex: k = 2 ⋆ : k -plane drawing: every edge crossed by at most k other edges k = 2 k = 3 k ≥ 4 arbitrary k NP-hard MaxSPED NP-hard [Bruckdorfer PhD’15] Dynamic Programming if edge intersection graph O ( n log n ) is a tree , or more generally [Bruckdorfer et al. has bounded treewidth JGAA’17] MaxPED NP-hard 3 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  12. NP-Hardness 4 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  13. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 x 1 x 2 x 3 x 4 x 5 x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  14. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 x 1 = true x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  15. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 x 1 = false x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  16. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 x 1 = false x 2 = true x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  17. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 x 1 = false x 2 = true x 3 = true 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  18. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 x 1 = true x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  19. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 clause gadgets: 3 optimal states x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 x 1 = true x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  20. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 clause gadgets: 3 optimal states x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 x 1 = true x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  21. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 clause gadgets: 3 optimal states x 1 ∨ x 2 ∨ x 3 x 1 ∨ x 3 ∨ x 4 x 1 = true x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  22. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 clause gadgets: 3 optimal states x 1 ∨ x 2 ∨ x 3 literal wires: even length paths, 2 opt. states x 1 ∨ x 3 ∨ x 4 x 1 ∨ x 2 ∨ x 3 x 1 = true x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  23. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 clause gadgets: 3 optimal states x 1 ∨ x 2 ∨ x 3 literal wires: even length paths, 2 opt. states x 1 ∨ x 3 ∨ x 4 x 1 ∨ x 2 ∨ x 3 x 1 = false x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  24. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 clause gadgets: 3 optimal states x 1 ∨ x 2 ∨ x 3 literal wires: even length paths, 2 opt. states x 1 ∨ x 3 ∨ x 4 x 1 ∨ x 2 ∨ x 3 x 1 = false x 2 = false x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

  25. NP-Hardness of MaxSPED reduction from Planar 3SAT planar 3SAT formula gadget-based reduction x 1 ∨ x 4 ∨ x 5 x 2 ∨ x 3 ∨ x 4 variable gadgets: 2 optimal states x 1 x 2 x 3 x 4 x 5 clause gadgets: 3 optimal states x 1 ∨ x 2 ∨ x 3 literal wires: even length paths, 2 opt. states x 1 ∨ x 3 ∨ x 4 x 1 ∨ x 2 ∨ x 3 x 1 = false x 2 = true x 3 = false 5 M. Hummel, F. Klute, S. Nickel, M. N¨ ollenburg · Maximizing Ink in Partial Edge Drawings of k -plane Graphs

Recommend


More recommend