matrix completion from fewer entries
play

Matrix Completion from Fewer Entries Raghunandan Keshavan, Andrea - PowerPoint PPT Presentation

Matrix Completion from Fewer Entries Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Stanford University March 30, 2009 Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion Outline The problem, a look at the data, and


  1. Matrix Completion from Fewer Entries Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Stanford University March 30, 2009 Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  2. Outline The problem, a look at the data, and some results (slides) 1 Proofs (blackboard) 2 arXiv:0901.3150 Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  3. The problem, a look at the data, and some results Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  4. Netflix dataset: A big (!) matrix 2 1 3 1 4 4 5 4 4 3 5 2 · 10 4 movies 4 1 5 4 4 1 3 3 4 4 M = 1 4 4 5 3 4 1 2 1 2 1 3 4 4 4 2 5 · 10 5 users 10 8 ratings Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  5. A big (!) matrix 2 1 3 ? 1 4 4 5 4 4 3 5 ? 2 · 10 4 movies 4 1 5 4 4 1 3 3 4 4 M = 1 4 4 ? 5 3 4 1 2 ? 1 2 1 3 ? 4 4 4 2 5 · 10 5 users 10 6 queries Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  6. You get a prize if. . . RMSE < 0 . 8563 ; − ) Is this possible? Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  7. You get a prize if. . . RMSE < 0 . 8563 ; − ) Is this possible? Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  8. You get a prize if. . . RMSE < 0 . 8563 ; − ) Is this possible? Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  9. A model: Incoherent low-rank matrices Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  10. The observations 13421532161432614361436514327147171542154437171521726547152481582524858141258141841852423233334448148 24312412365126251454231542321542121432413512442422555231552162561272662262626713242442515252233333341 5125125653426356254412545346532671735712351663571237213533333333172671238127638172681871881 24312412365126251454231542321542143214324135124424225534242444245231552162561272662262626711515252241 24312412365126251454231542321542143214324135124423323212144422555231552162561272662262626711515252241 24312412365126251454231542321542143214324135124424225552315521625612726622621412412212626711515252241 41315426514236152461547‘614542422471‘6567157157‘65147‘615241543154311315464566366531253151353116‘161466 24312412365126251454231542321542143214324135124424225552315521625612726622626267115143434343225252241 24312412365126251454231542321542143214324135124424225552315521625612726622623452352566626711515252241 41315426514236152461547‘614542422471‘6567157157‘65147‘615241543154311315312345334646653151353116‘161466 n movies 24312412365126251454231542321542143214324135124424225552315521343466663562561272662262626711515252241 24312412365126251454231542321542143214324135124424223434543453555231552162561272662262626711515252241 41315426514236152461547‘614542422471‘6567157157‘65147‘353534543361524154315431131531253151353116‘161466 24312412365126251454231542321542143214343453453452413512442422555231552162561272662262626711515252241 24312412365126251454231542321542143245345354551432413512442422555423155216256127266226262671151525241 41315426514236152461547‘614542422471‘346567157157‘65147‘61524154315431131531253151353116‘16146453454356 M = 24312412365126251454231542321542143214324135133133111124424225552315521625461272662262626711515252241 24312412365126251454231542321542143334211233321432413512442422555231552162561272662262626711515252241 24312412365126251454231542321542143214324135124424225552315521625612721231‘13132662262626711515252241 41315426514236152461547‘614542422471‘6567157157‘65147‘615241543154311131232333311531253151353116‘161466 24312412365126251454231542321542143214324135124424225552315521625612726622626267115152522443744747441 41315426514236152461547‘614542422471‘6567157157‘65147‘615241543154311343344453551531253151353116‘161466 143265421542715765127651543151221652465236125436541625143615243162534535666461r5261463416452646161611 41315426514236152461547‘614542422471‘6567157157‘65147‘615241543154366363443135131531253151353116‘161466 41315426514236152461547‘614542422471‘6567157157‘65147‘615241543144444345554431131531253151353116‘161466 24312412365126251454231542321542143214324135124424225552315521625446346466661272662262626711515252241 24312412365126251454231542321542143214324135124424225552315521625446436666661272662262626711515252241 41315426514236152461547‘614542422471‘6567157157‘65147‘615241545345346664315431131531253151353116‘161466 24312412365126251454231542321542143214324135124424225552315521625464363423361272662262626711515252241 24312412365126251454231542321542143214324135124424225552315521624534466433561272662262626711515252241 41315426514236152461547‘614542422471‘6567157157‘65147‘615241543135353453445431131531253151353116‘161466 24312412365126251454231542321542343434445514321432413512442422555231552162561272662262626711515252241 24312412365126251454231542434444453332154214321432413512442422555231552162561272662262626711515252241 n α users Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  11. The observations 2 1 3 1 4 4 5 4 4 3 5 n movies 4 1 5 4 4 M E = 1 3 3 4 4 1 4 4 5 3 4 1 2 1 2 1 3 4 4 4 2 n α users n ǫ unif. random positions Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  12. You need some structure! r V T r n α M = U n r ≪ n Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  13. You need some structure! r V T r n α M = U n r ≪ n Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  14. Unstructured factors A1. Bounded entries √ r . | M ia | ≤ M max = µ 0 A2. Incoherence r r � � U 2 V 2 ik ≤ µ 1 r , ak ≤ µ 1 r . k =1 k =1 [Cand´ es, Recht 2008] Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  15. Metric ( RMSE )   1 / 2   � 1 D (M , ˆ | M ia − ˆ M ia | 2 M) ≡  n 2 M 2  max i , a Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  16. Previous work Theorem (Cand´ es, Recht, 2008) If ǫ ≥ C r n 1 / 5 log n then whp 1. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007] Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  17. Previous work Theorem (Cand´ es, Recht, 2008) If ǫ ≥ C r n 1 / 5 log n then whp 1. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007] Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  18. Previous work Theorem (Cand´ es, Recht, 2008) If ǫ ≥ C r n 1 / 5 log n then whp 1. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007] Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  19. Previous work Theorem (Cand´ es, Recht, 2008) If ǫ ≥ C r n 1 / 5 log n then whp 1. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007] Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  20. Previous work Theorem (Cand´ es, Recht, 2008) If ǫ ≥ C r n 1 / 5 log n then whp 1. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007] Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  21. Great, but. . . 1. n 1 / 5 observations for 1 bit of information? 2. RMSE = 0? O ( n 4 ... 6 ). Substitute n = 10 5 . . . 3. SDP = Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  22. Great, but. . . 1. n 1 / 5 observations for 1 bit of information? 2. RMSE = 0? O ( n 4 ... 6 ). Substitute n = 10 5 . . . 3. SDP = Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  23. Great, but. . . 1. n 1 / 5 observations for 1 bit of information? 2. RMSE = 0? O ( n 4 ... 6 ). Substitute n = 10 5 . . . 3. SDP = Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  24. Great, but. . . 1. n 1 / 5 observations for 1 bit of information? 2. RMSE = 0? O ( n 4 ... 6 ). Substitute n = 10 5 . . . 3. SDP = Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  25. O ( n ) entries are enough (practice) Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  26. A movie Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  27. Rank = 1: Bayes optimal vs. Belief Propagation 1 n=100 n=1000 n=10000 0.8 0.6 D 0.4 0.2 0 0 2 4 6 8 10 12 14 ǫ Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  28. Rank = 2: Belief Propagation n=100 1.4 n=1000 n=10000 1.2 1 0.8 D 0.6 0.4 0.2 0 0 2 4 6 8 10 12 ǫ Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  29. Rank = 3: Belief Propagation 1.8 n=100 n=1000 1.6 n=10000 1.4 1.2 1 D 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 12 14 16 18 ǫ Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  30. Rank = 4: Belief Propagation 2.2 n=100 2 n=1000 n=10000 1.8 1.6 1.4 1.2 D 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 ǫ Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

  31. O ( n ) entries are enough (theory) Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Matrix Completion

Recommend


More recommend