Matrix Completion from a Few Entries Raghunandan Keshavan, Andrea Montanari and Sewoong Oh Stanford University Physics of Algorithms Santa Fe - Aug 31, 2009 R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 1 / 24
Motivating Example : Recommender System Netflix Challenge 2 1 3 1 4 4 5 4 4 3 5 2 · 10 4 movies 4 1 5 4 4 1 3 3 4 4 1 M = 4 4 5 3 4 1 2 1 2 1 3 4 4 4 2 5 · 10 5 users 10 8 ratings R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 2 / 24
The Model R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 3 / 24
Matrix Completion Problem V T Σ r n Low-rank M = U n α r 1. Low-rank matrix M = U Σ V T . U T U = n , V T V = n α, Σ = diag (Σ 1 , Σ 2 , . . . , Σ r ) 2. Uniformly random sample E ⊂ [ n ] × [ n α ] given its size | E | . [ k ] = { 1 , 2 , . . . , k } R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 4 / 24
Matrix Completion Problem Sample M E n n α 1. Low-rank matrix M = U Σ V T . U T U = n , V T V = n α, Σ = diag (Σ 1 , Σ 2 , . . . , Σ r ) 2. Uniformly random sample E ⊂ [ n ] × [ n α ] given its size | E | . [ k ] = { 1 , 2 , . . . , k } R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 4 / 24
Matrix Completion Problems � � For any estimation � √ mn || M − � 1 M , let RMSE = M || F || A || 2 ij A 2 F = P ij R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 5 / 24
Matrix Completion Problems � � For any estimation � √ mn || M − � 1 M , let RMSE = M || F Q1. How many samples do we need to get RMSE ≤ δ ? (1 + α ) rn � | E | = O ( nr ) Q2. How many samples do we need to recover M exactly ? n log n � | E | = O ( n log n ) Q3. What if the samples are corrupted by noise? R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 5 / 24
Matrix Completion Problems � � For any estimation � √ mn || M − � 1 M , let RMSE = M || F Q1. How many samples do we need to get RMSE ≤ δ ? (1 + α ) rn � | E | = O ( nr ) Q2. How many samples do we need to recover M exactly ? n log n � | E | = O ( n log n ) Q3. What if the samples are corrupted by noise? R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 5 / 24
Matrix Completion Problems Q1. How many samples do we need to get RMSE ≤ δ ? (1 + α ) rn � | E | = O ( nr ) Q2. How many samples do we need to recover M exactly ? n log n � | E | = O ( n log n ) Q3. What if the samples are corrupted by noise? R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 5 / 24
Matrix Completion Problems Q1. How many samples do we need to get RMSE ≤ δ ? (1 + α ) rn � | E | = O ( nr ) Q2. How many samples do we need to recover M exactly ? n log n � | E | = O ( n log n ) Q3. What if the samples are corrupted by noise? R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 5 / 24
Matrix Completion Problems Q1. How many samples do we need to get RMSE ≤ δ ? (1 + α ) rn � | E | = O ( nr ) Q2. How many samples do we need to recover M exactly ? n log n � | E | = O ( n log n ) Q3. What if the samples are corrupted by noise? R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 5 / 24
Matrix Completion Problems Q1. How many samples do we need to get RMSE ≤ δ ? (1 + α ) rn � | E | = O ( nr ) Q2. How many samples do we need to recover M exactly ? n log n � | E | = O ( n log n ) Q3. What if the samples are corrupted by noise? R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 5 / 24
Pathological Example M = e 1 e T 1 � 1 0 · · · 0 0 0 · · · 0 n . . . ... . . . . . . � 0 0 · · · 0 P (observing M 11 ) = | E | n 2 R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 6 / 24
Pathological Example M = e 1 e T 1 � 1 0 · · · 0 0 0 · · · 0 n . . . ... . . . . . . � 0 0 · · · 0 P (observing M 11 ) = | E | n 2 R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 6 / 24
Incoherence Property M is ( µ 0 , µ 1 )-incoherent if √ r ; , A 1 . M max ≤ µ 0 Σ 1 r r � � U 2 V 2 A 2 . ia ≤ µ 1 r , ja ≤ µ 1 r . a =1 a =1 [Cand´ es, Recht 2008 [1]] R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 7 / 24
Previous Work Theorem (Cand´ es, Recht 2008 [1]) Let M be an n × n α matrix of rank r satisfying ( µ 0 , µ 1 )-incoherence condition. If | E | ≥ C ( α, µ 0 , µ 1 ) rn 6 / 5 log n , then w.h.p. Semidefinite Programming reconstructs M exactly. R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 8 / 24
Main Contributions Questions Main Results � � 1 2 nr 1. RMSE ≤ C ( α ) | E | 2. Exact Reconstruction | E | = O ( n log n ) 3. Noisy Reconstruction | E | = O ( n log n ) M || F ≤ C n √ α r √ mn || M − � 1 | E | || Z E || 2 ( N = M + Z ) 4. Complexity? O ( | E | r log n ) R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 9 / 24
Main Contributions Questions Main Results � � 1 2 nr 1. RMSE ≤ C ( α ) | E | 2. Exact Reconstruction | E | = O ( n log n ) 3. Noisy Reconstruction | E | = O ( n log n ) M || F ≤ C n √ α r √ mn || M − � 1 | E | || Z E || 2 ( N = M + Z ) 4. Complexity? O ( | E | r log n ) R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 9 / 24
Main Contributions Questions Main Results � � 1 2 nr 1. RMSE ≤ C ( α ) | E | 2. Exact Reconstruction | E | = O ( n log n ) 3. Noisy Reconstruction | E | = O ( n log n ) M || F ≤ C n √ α r √ mn || M − � 1 | E | || Z E || 2 ( N = M + Z ) 4. Complexity? O ( | E | r log n ) R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 9 / 24
Main Contributions Questions Main Results � � 1 2 nr 1. RMSE ≤ C ( α ) | E | 2. Exact Reconstruction | E | = O ( n log n ) 3. Noisy Reconstruction | E | = O ( n log n ) M || F ≤ C n √ α r √ mn || M − � 1 | E | || Z E || 2 ( N = M + Z ) 4. Complexity? O ( | E | r log n ) R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 9 / 24
Main Contributions Questions Main Results � � 1 2 nr 1. RMSE ≤ C ( α ) | E | 2. Exact Reconstruction | E | = O ( n log n ) 3. Noisy Reconstruction | E | = O ( n log n ) M || F ≤ C n √ α r √ mn || M − � 1 | E | || Z E || 2 ( N = M + Z ) 4. Complexity? O ( | E | r log n ) R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 9 / 24
The Algorithm and Main Theorems R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 10 / 24
Na¨ ıve Approach � M ij if ( i , j ) ∈ E , M E ij = 0 otherwise . n � M E = x k σ k y T k k =1 Rank- r projection : r � P r ( M E ) ≡ n 2 α x k σ k y T k | E | k =1 R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 11 / 24
Na¨ ıve Approach Fails Define : deg ( row i ) ≡ # of samples in row i . � For | E | = O ( n ), spurious singular values of Ω( log n / (log log n )). Solution : Trimming 0 if deg ( row i ) > 2 E [ deg ( row i )] , M E � 0 if deg ( col j ) > 2 E [ deg ( col i )] , ij = M E otherwise . ij R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 12 / 24
Na¨ ıve Approach Fails Define : deg ( row i ) ≡ # of samples in row i . � For | E | = O ( n ), spurious singular values of Ω( log n / (log log n )). Solution : Trimming 0 if deg ( row i ) > 2 E [ deg ( row i )] , M E � 0 if deg ( col j ) > 2 E [ deg ( col i )] , ij = M E otherwise . ij R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 12 / 24
Na¨ ıve Approach Fails Define : deg ( row i ) ≡ # of samples in row i . � For | E | = O ( n ), spurious singular values of Ω( log n / (log log n )). Solution : Trimming 0 if deg ( row i ) > 2 E [ deg ( row i )] , M E � 0 if deg ( col j ) > 2 E [ deg ( col i )] , ij = M E otherwise . ij R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 12 / 24
The Algorithm OptSpace Input : sample positions E , sample values M E , rank r Output : estimation � M M E be the output; Trim M E , and let � 1: Compute rank- r projection P r ( � M E ) = X 0 S 0 Y T 2: 0 ; 3: R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 13 / 24
Main Result Theorem (Keshavan, Montanari, Oh, 2009 [2]) Let M be an n × n α matrix of rank-r bounded by M max . Then, w.h.p, � nr 1 || M − P r ( � M E ) || F = RMSE ≤ C ( α ) | E | , nM max R.Keshavan, A.Montanari, S.Oh (Stanford) Physics of Algorithms 2009 Aug 31, 2009 14 / 24
Recommend
More recommend