mate nagy mate nagy
play

Mate Nagy Mate Nagy Georgia Institute of Technology Georgia - PowerPoint PPT Presentation

Catalytic Conversion of Catalytic Conversion of Biomass to Biofuels Biofuels Biomass to Lignin Hydrogenation Lignin Hydrogenation Mate Nagy Mate Nagy Georgia Institute of Technology Georgia Institute of Technology Overview


  1. Catalytic Conversion of Catalytic Conversion of Biomass to Biofuels Biofuels Biomass to “Lignin Hydrogenation Lignin Hydrogenation” ” “ Mate Nagy Mate Nagy Georgia Institute of Technology Georgia Institute of Technology

  2. Overview Overview Fossil fuels vs. Biofuels Biofuels Fossil fuels vs. � � Available raw materials Available raw materials � � Experimental setup Experimental setup � � Black liquor – Black liquor – Model compounds – Model compounds –

  3. The Carbon- -cycle cycle The Carbon Biomass Fossils Closed cycle Broken cycle

  4. Available raw materials Available raw materials • From total annual biomass produced • From total annual biomass produced 9 biosynthetically on Earth: 170 x 10 9 biosynthetically on Earth: 170 x 10 tons: tons: OCH 3 HO OH • Carbohydrates: ~ 70% • Carbohydrates: ~ 70% HO OH HO O • Lignin: ~ 20% • Lignin: ~ 20% OCH 3 H 3 CO HO O O OCH 3 Cellulose Hemicelluloses HO Cellulose Hemicelluloses HO OCH 3 HO OCH 3 HO O O HO OCH 3 Lignin is the second most abundant Lignin is the second most abundant O OCH 3 O OAc Cellulose is the most abundant Cellulose is the most abundant O OAc O O OH AcO HO O OH HO O O OH AcO O-Xylan O HO O OH HO O biopolymer on Earth. Biosphere has an biopolymer on Earth. Biosphere has an OAc O O OAc O OH O O O OH O OH O renewable biomaterial on Earth, with a renewable biomaterial on Earth, with HO a O OH O HO O O HO O H 3 CO O HO O 9 metric tons of lignin HO estimated 300 x 10 9 O estimated 300 x 10 metric tons of lignin O O OCH 3 O HO O OH OH OH O HO HO O OH OH O OCH 3 9 annual biosynthesis rate OH OH 100 x 10 9 100 x 10 annual biosynthesis rate OH HO 9 annual biosynthesis rate with a 20 x 10 9 with a 20 x 10 annual biosynthesis rate OH HO HO O HO O HO OCH 3 O H 3 CO OH HO OH HO O OCH 3 O ≈ DP ≈ DP 90 - 90 - 110 110 OCH 3 O

  5. Differences between biomass based raw Differences between biomass based raw materials and gasoline or diesel materials and gasoline or diesel Gasoline Gas Carbohydrate Lignin Gasoline Gas Carbohydrate Lignin oil/diesel oil/diesel Carbon chain length Carbon chain length 5- 5 -10 10 12 12- -20 20 [6- [6 -5] 5] [9- [9 -10] 10] n n n n O/C molar ratio O/C molar ratio 0 0 0 0 1 1 0.3 0.3- -0.4 0.4 H/C molar ratio H/C molar ratio 1 1- -2 2 ~2 ~2 2 2 0.7- 0.7 -1.1 1.1 Phase behavior Phase behavior liquid liquid liquid liquid solid solid liquid- liquid -solid solid (ambient T) (ambient T) Polarity a- -polar polar a- -polar polar polar a- -polar polar Polarity a a polar a Preferred structure branched/arom linear/saturat linear/cyclic branched Preferred structure branched/arom linear/saturat linear/cyclic branched atic atic ed ed (3D) (3D) /cyclic/unsatur /cyclic/unsatur ated ated

  6. Pulp and Paper Industry Pulp and Paper Industry � Most abundant biopolymers are available in Most abundant biopolymers are available in � the form of lignocellulose lignocellulose matrix matrix “ “wood wood” ”. . the form of � US agriculture and forestry reserves have US agriculture and forestry reserves have � the potential to address at least 30% of the the potential to address at least 30% of the nation’ ’s current petroleum demand. s current petroleum demand. nation US timberland inventory is 21 10 9 9 dry tons, • US timberland inventory is 21 10 dry tons, • 6 tons with an annual production of 368 10 6 tons with an annual production of 368 10 6 tons. and consumption of 142 10 6 tons. and consumption of 142 10 • US Pulp and Paper industry collects and US Pulp and Paper industry collects and • 6 tons processes 108 10 6 tons anually anually. . processes 108 10

  7. Chemical Pulping “ “ Kraft Kraft” ” Chemical Pulping Component Wood Components Kraft Pulp Component Wood Components Kraft Pulp Components Components Pine Birch Pine Birch Pine Birch Pine Birch As a % of Original Wood As a % of Original Wood Cellulose Cellulose 38 38 – 40 40 40 40 – 41 41 35 35 34 34 – – Glucomannan 15 - - 20 2 - - 5 5 1 Glucomannan 15 20 2 5 5 1 Xylan 7 - - 10 25 25 – 30 30 5 16 Xylan 7 10 5 16 – Other carbohydrates 0 - - 5 0 – 4 - - Other carbohydrates 0 5 0 4 - - – Lignin 27 - - 29 20 – 22 2 – 5 1.5 – 3 Lignin 27 29 20 22 2 5 1.5 3 – – – Extraneous Extraneous 4 4 - - 6 6 2 - 2 - 4 4 0.25 0.25 < 0.5 < 0.5 compounds compounds

  8. Catalytic conversion of biomass to Catalytic conversion of biomass to biofuels biofuels Biofuel precursor: Biofuel precursor: ∼ OCH 3 ∼ C 800 – C 900 C – C HO 800 900 OH HO C 9 – C 18 C – C OH HO O 9 18 OCH 3 Cracking Biopolymer Cracking Biopolymer H 3 CO HO Viable Biodiesel Viable Biodiesel O O OCH 3 HO HO OCH 3 or Biogasoline or Biogasoline HO OCH 3 Current Research Activities: Current Research Activities: HO O Component Component O HO - Utilization of conventional - Utilization of conventional OCH 3 O OCH 3 heterogeneous hydrogenation heterogeneous hydrogenation HO OH O OH catalysts catalysts OH H 3 CO O O - Development of homogenous - Development of homogenous O OCH 3 HO OCH 3 OH HO aqueous phase catalysis aqueous phase catalysis OH O HO OCH 3 chemistry for hydrogenation chemistry for hydrogenation HO cleavage of: cleavage of: O OCH 3 O Aryl- Aryl -O O- -Aryl Aryl OCH 3 Aryl- Aryl -O O- -Aliphatic Ethers Aliphatic Ethers O

  9. Selected hydrogenation catalysts Selected hydrogenation catalysts Complexes Non- -water water- -soluble soluble Water- -soluble soluble Complexes Non Water hydrogenation complexes hydrogenation complexes hydrogenation complexes hydrogenation complexes Ruthenium Ruthenium Ru(Cl) Ru(Cl) 2 ( PPh ( PPh 3 ) ) [Ru(Cl) [Ru(Cl) 2 ( TPPMS) ( TPPMS) 2 ] ] 3 2 2 3 3 2 2 2 Ru(H)(Cl)( PPh Ru(H)(Cl)( PPh 3 ) ) Ru(H)(Cl)(TPPMS) Ru(H)(Cl)(TPPMS) 3 3 3 3 3 Ru(H) (PPh ) Ru(H) (TPPMS) Ru(H) 2 (PPh 3 ) Ru(H) 2 (TPPMS) 2 3 3 3 2 3 3 Ru(Cl)(H)(CO)(PPh ) Ru(Cl)(H)(CO)(PPh 3 ) 3 3 3 Rhodium Rhodium RhCl(PPh ) RhCl(TPPMS) RhCl(PPh 3 ) RhCl(TPPMS) 3 3 3 3 3 Other hydrogenation Other hydrogenation Non- Non -water water- -soluble soluble Water Water- -soluble soluble catalysts catalysts Nickel Nickel Raney- -nickel (hetero) nickel (hetero) Raney Platinum Platinum Pt/C (Carbon supp./hetero) Pt/C (Carbon supp./hetero) Palladium Palladium Pd/C(Carbon supp./hetero) Pd/C(Carbon supp./hetero) Ruthenium Ruthenium Ru Ru- -(PVP) (PVP) nanoparticle nanoparticle

  10. Experimental setup Experimental setup 4560 Mini Parr reactor 4560 Mini Parr reactor � � equipped with a 4842 equipped with a 4842 temperature controller. temperature controller. Pressurized with UHP Pressurized with UHP � � Hydrogen gas. Hydrogen gas. Under on- -line controlled line controlled Under on � � time and pressure. time and pressure.

  11. Black Liquor Lignin Hydrogenation Black Liquor Lignin Hydrogenation Extraction Extraction

  12. Black Liquor Lignin Hydrogenation Black Liquor Lignin Hydrogenation OCH 3 TSP HO 1 H H- -NMR: NMR: 1 OH HO OH HO O OCH 3 H 3 CO HO O O OCH 3 HO HO OCH 3 HO OCH 3 HO O O HO OCH 3 12 10 8 6 4 2 0 ppm O OCH 3 DMSO HO OH O OH 13 C C- -NMR: NMR: 13 OH H 3 CO O O O OCH 3 HO OCH 3 OH HO OH O HO OCH 3 HO O O OCH 3 OCH 3 O 180 160 140 120 100 80 60 40 ppm

  13. Modelling the lignin Modelling the lignin polymer polymer OCH 3 H 3 CO HO OH O HO H 3 CO OCH 3 OCH 3 HO OH HO O O O OH OCH 3 O 5- 5 -5 5 α - -O O- -4 4 α H 3 CO HO O O OCH 3 HO H 3 CO OCH 3 HO OCH 3 OCH 3 HO O O O OCH 3 OCH 3 HO HO O O H 3 CO O O O OCH 3 HO HO OCH 3 OCH 3 O O OCH 3 OH HO OH O OH β - β -O O- -4 4 Dibenzodioxocin Dibenzodioxocin 4- -O O- -5 5 4 OH H 3 CO O O O OCH 3 OH HO HO OH OCH 3 OH HO O H 3 CO OH HO OH O HO O OH OH OCH 3 OCH 3 HO O O OCH 3 H 3 CO H 3 CO OCH 3 OCH 3 O O O O OCH 3 β - β -1 1 β - - β β β β - -5 5 O β

  14. Modelling the lignin Modelling the lignin polymer polymer Linkage type Dimer structure Approximate Linkage type Dimer structure Approximate percentage percentage -O O- -4 4 Phenylpropane -aryl ether aryl ether 45- -50 50 β - Phenylpropane β - 45 β β -O O- -4 4 Phenylpropane -aryl ether aryl ether 6- -8 8 α - Phenylpropane α - 6 α α β - -5 5 Phenylcoumaran 9- -12 12 Phenylcoumaran 9 β 5- 5 -5 5 Biphenyl and dibenzodioxocin Biphenyl and dibenzodioxocin 18 18- -25 25 4- 4 -O O- -5 5 Diaryl Diaryl ether ether 4- 4 -8 8 -1 1 β - 1,2- 1,2 -Diaryl propane Diaryl propane 7- 7 -10 10 β - β - β -Linked structures Linked structures 3 β - β - β - 3 β β β

  15. Modelling the lignin Modelling the lignin polymer polymer OCH 3 OCH 3 O O OH HO OCH 3 O OH β - β -O O- -4 4 Phenol, 4 Phenol, 4- -[2 [2- -(2 (2- -methoxyphenoxy)ethyl]) methoxyphenoxy)ethyl])

Recommend


More recommend