martingale difference central limit theorem
play

Martingale Difference Central Limit Theorem Yichen Zhou May 9, 2016 - PowerPoint PPT Presentation

Martingale Difference Central Limit Theorem Yichen Zhou May 9, 2016 Intuition Why martingale difference CLT. Statisticians rely on CLTs to make inference. CLTs we have seen before all require independence. Martingale difference CLT


  1. Martingale Difference Central Limit Theorem Yichen Zhou May 9, 2016

  2. Intuition Why martingale difference CLT. ◮ Statisticians rely on CLTs to make inference. ◮ CLTs we have seen before all require independence. ◮ Martingale difference CLT extends the scope by taking into account the dependence.

  3. Setup ◮ Martingale array: { S ni , F ni , 1 ≤ i ≤ k n } zero-mean, square-integrable martingales for each n ≥ 1 . ◮ It can be derived from an ordinary martingale { S n , F n , 1 ≤ n } by setting k n = n, F ni = F n , S ni = s − 1 n S i 1 2 . s n = ( var ( S n ))

  4. ◮ Martingale difference: X ni = S ni − S n,i − 1 . ◮ Notice E ( X ni | F n,i − 1 ) = 0 . ◮ Conditional variance and squared variation of S ni : i i V 2 � E ( X 2 U 2 � X 2 ni = nj | F n,j − 1 ) , ni = nj . j =1 j =1

  5. Martingale CLT Theorem (Martingale CLT I) Follow the notations above. Suppose η 2 is an a.s. finite r.v., and p p � X 2 → η 2 , max | X ni | − → 0 , − ni i i � � X 2 E max < M < ∞ , ni i F ni ⊆ F n +1 ,i . Therefore � d S nk n = X ni − → Z, i where Z has the characteristic function � � exp( − 1 E ( e itZ ) = E 2 η 2 t 2 ) .

  6. Martingale CLT Theorem (Martingale CLT II) Follow the notations above. Suppse � � E max | X ni | → 0 , i p � X 2 → σ 2 , − ni i then d → N (0 , σ 2 ) . S nk n −

  7. Proof of Martingale CLT Main idea of the proof: ◮ Truncate the martingale array by a stopping time. ◮ Show that the truncation results in a negligible difference. ◮ Show that the truncated array converges in distribution to normal.

  8. Truncation ◮ WLOG, σ 2 = 1 . ◮ Define the stopping time t � X 2 T n = inf { t : ni > 2 } ∧ k n . i =1 ◮ Consider the new martingale array { ˜ S ni = S n,i ∧ T n , F ni , 1 ≤ i ≤ k n } with its differences Z ni = S n,i ∧ T n − S n, ( i − 1) ∧ T n = X ni ✶ { � i − 1 j =1 X 2 nj ≤ 2 } = X ni ✶ { T n >i − 1 } .

  9. Truncation is Negligible ◮ Recall k n → σ 2 = 1 . p � X 2 − ni i =1 ◮ After truncation, P ( ˜ S nk n � = S nk n ) = P ( X n,i � = Z n,i for some i ≤ k n ) = P ( T n ≤ k n − 1) � k n � � X 2 ≤ P ni > 2 → 0 . i =1 ◮ Therefore k n p p ˜ � Z 2 S nk n − S nk n → 0 , − − → 1 . ni i =1

  10. Convergence ◮ Suffices to show − t 2 � � E exp( it ˜ S nk n ) → exp . 2 ◮ Taylor expansion − x 2 � � exp( ix ) = (1 + ix ) exp 2 + r ( x ) , where | r ( x ) | < | x | 3 . Thus k n exp( it ˜ � S nk n ) = exp( itZ nj ) j =1     k n k n k n  − t 2 � � �  exp Z 2  . = (1 + itZ nj ) nj + r ( tZ nj )  2 j =1 j =1 j =1

  11. Martingale CLT Lemma For n ≥ 1 , let { U n } , { V n } be random variables satisfying the following conditions: p 1. U n − → a , 2. { V n } and { V n U n } are uniformly integrable sequences, 3. EV n → 1 . Then EV n U n → a. ◮ Based the lemma, let   k n k n k n  − t 2 � � Z 2 �  . V n = (1+ itZ nj ) , U n = exp nj + r ( tZ nj ) 2 j =1 j =1 j =1

  12. Martingale CLT ◮ Proof of the lemma: p V n ( U n − a ) is u.i.. Suffices to show V n ( U n − a ) − → 0 . P ( | V n ( U n − a ) | > ǫ ) ≤ P ( | U n − a | > ǫ/K ) + P ( | V n | > K ) → 0 . ◮ | V n U n | ≤ 1 , so { V n U n } is u.i.

  13. Martingale CLT ◮ To show   k n k n  − t 2 − t 2 � �  p � Z 2 � U n = exp nj + r ( tZ nj ) − → exp , 2 2 j =1 j =1 p notice � k n i =1 Z 2 − → 1 and ni � � k n k n � � � � � � ≤ | t | 3 | Z nj | 3 r ( tZ nj ) � � � � j =1 j =1 � � k n � ≤ | t | 3 | X nj | 3 j =1 k n ≤ | t | 3 max p � X 2 | X nj | − → 0 . nj j j =1

  14. Martingale CLT ◮ To show k n T n � � V n = (1 + itZ nj ) = (1 + itX nj ) j =1 j =1 is u.i., by | 1 + iz | 2 ≤ exp( z 2 ) ,    �  | 1 + itX nT n | | V n | = | 1 + itX nj | j<T n    t 2 � X 2  (1 + | t || X nT n | ) ≤ exp nj 2 j<T n ≤ exp( t 2 )(1 + | t | max | X nj | ) . j Recall E (max j | X nj | ) → 0 , so max j | X nj | is u.i. So is V n .

  15. Martingale CLT ◮ To show EV n → 1 , notice   k n � EV n = E (1 + itZ nj )   j =1    �  k n � � � = E  E (1 + itZ nj ) F n,k n − 1   �  � j =1 �   k n − 1 � = E  E (1 + itZ nk n | F n,k n − 1 ) (1 + itZ nj )  j =1   k n − 1 �  = 1 . = E (1 + itZ nj )  j =1

  16. Reference Peter Hall Martingale Limit Theory and Its Application . Academic Press, 1980. Sethuramas Sunder A Martingale Central Limit Theorem. http://math.arizona.edu/˜sethuram/notes/wi mart1.pdf

More recommend