Magneto-acoustic waves in asymmetric solar waveguides Progress in spatial magneto-seismology Matthew Allcock and Robertus Erd´ elyi
The layers of an onion
Magnetohydrodynamic waves Ubiquitous in the solar atmosphere Credit: NASA, SDO
Magnetohydrodynamic waves Diagnosing information about solar plasma Observations
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave parameters Observations Equilibrium parameters
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical understanding
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical Equilibrium understanding models
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical Equilibrium Eigenmodes understanding models
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models
Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models
Slab structures on the Sun Max Planck Institute for Solar System Research BBSO/NJIT
Equilibrium conditions ρ 1 , p 1 , T 1 ρ 2 , p 2 , T 2 ρ 0 , p 0 , T 0 z y x 0 x − x 0 Uniform magnetic field in the slab. Field-free plasma outside. Different density and pressure on each side.
Governing equations Ideal MHD equations: Conservation of: ρ D ✈ D t = −∇ p − 1 µ ❇ × ( ∇ × ❇ ) , momentum ∂ρ ∂ t + ∇ · ( ρ ✈ ) = 0 , mass � p � D = 0 , energy D t ρ γ ∂ ❇ ∂ t = ∇ × ( ✈ × ❇ ) , magnetic flux ✈ = plasma velocity, ❇ = magnetic field strength, ρ = density, p = pressure, µ = magnetic permeability, γ = adiabatic index.
Governing equations Ideal MHD equations: Conservation of: ρ D ✈ D t = −∇ p − 1 µ ❇ × ( ∇ × ❇ ) , momentum ∂ρ ∂ t + ∇ · ( ρ ✈ ) = 0 , mass � p � D = 0 , energy D t ρ γ ∂ ❇ ∂ t = ∇ × ( ✈ × ❇ ) , magnetic flux ✈ = plasma velocity, ❇ = magnetic field strength, ρ = density, p = pressure, µ = magnetic permeability, γ = adiabatic index.
Asymmetric slab modes Dispersion relation: ω 4 m 02 k 2 v A 2 − ω 2 + ρ 0 ρ 0 m 2 ( k 2 v A 2 − ω 2 ) m 1 ρ 1 ρ 2 � ρ 0 � − 1 m 1 + ρ 0 2 m 0 ω 2 m 2 (tanh m 0 x 0 + coth m 0 x 0 ) = 0 , ρ 1 ρ 2 m 02 = ( k 2 v A 2 − ω 2 )( k 2 c 2 0 − ω 2 ) ω 2 m 1 , 22 = k 2 − 0 + v A 2 )( k 2 c T 2 − ω 2 ) , c 1 , 22 , ( c 2 c 2 0 v A 2 B 0 c T 2 = v A = 0 + v A 2 , , c 2 √ µρ 0 See Allcock and Erd´ elyi, 2017.
Asymmetric slab modes Dispersion relation: ω 4 m 02 k 2 v A 2 − ω 2 + ρ 0 ρ 0 m 2 ( k 2 v A 2 − ω 2 ) m 1 ρ 1 ρ 2 � ρ 0 � − 1 m 1 + ρ 0 2 m 0 ω 2 m 2 (tanh m 0 x 0 + coth m 0 x 0 ) = 0 , ρ 1 ρ 2 m 02 = ( k 2 v A 2 − ω 2 )( k 2 c 2 0 − ω 2 ) ω 2 m 1 , 22 = k 2 − 0 + v A 2 )( k 2 c T 2 − ω 2 ) , c 1 , 22 , ( c 2 c 2 0 v A 2 B 0 c T 2 = v A = 0 + v A 2 , , c 2 √ µρ 0 See Allcock and Erd´ elyi, 2017.
Slab eigenmodes Symmetric kink surface mode
Slab eigenmodes Quasi-kink surface mode
Slab eigenmodes Symmetric sausage surface mode
Slab eigenmodes Quasi-sausage surface mode
Slab eigenmodes Body modes
Amplitude ratio ˆ ˆ ξ x ( − x 0 ) ξ x ( x 0 ) x x 0 − x 0 Amplitude ratio ˆ ξ x ( x 0 ) Top = quasi-kink R A := ( Bottom = quasi-sausage ) ˆ ξ x ( − x 0 ) � tanh � ( k 2 v A 2 − ω 2 ) m 1 ρ 1 − ω 2 m 0 ρ 0 ( m 0 x 0 ) � + � ρ 1 m 2 coth � tanh � = ( k 2 v A 2 − ω 2 ) m 2 ρ 2 − ω 2 m 0 − ρ 2 m 1 ρ 0 ( m 0 x 0 ) coth
Minimum perturbation shift x x x 0 x 0 − x 0 − x 0 � � ξ x ξ x ∆ min ∆ min x 0 x x 0 x − x 0 − x 0
Minimum perturbation shift x x x 0 x 0 − x 0 − x 0 Quasi-kink: Quasi-sausage: � 1 � ∆ min = 1 ∆ min = 1 tanh − 1 ( D ) tanh − 1 m 0 m 0 D ( k 2 v A 2 − ω 2 ) m 2 ρ 2 tanh( m 0 x 0 ) − ω 2 m 0 ρ 0 where D = ( k 2 v A 2 − ω 2 ) m 2 ρ 2 − ω 2 m 0 tanh( m 0 x 0 ) ρ 0
Solar magneto-seismology Parameter inversion Observe : ω , k , x 0 , T i , and R A or ∆ min . Solve to find: v A and hence B 0 .
Solar magneto-seismology Parameter inversion Observe : ω , k , x 0 , T i , and R A or ∆ min . Solve to find: v A and hence B 0 .
Future work Diagnose magnetic field parameters using observations of MHD waves in magnetic structures in the solar atmosphere, for example: Elongated magnetic bright points , Adaptation of Liu et al., 2017, by N. Zs´ amberger
Future work Diagnose magnetic field parameters using observations of MHD waves in magnetic structures in the solar atmosphere, for example: Elongated magnetic bright points , Prominences , NASA
Future work Diagnose magnetic field parameters using observations of MHD waves in magnetic structures in the solar atmosphere, for example: Elongated magnetic bright points , Prominences , Sunspot light walls . Max Planck Institute for Solar System Research
matthew allcock
Recommend
More recommend