New asymmetric gravity-capillary and flexural waves Jean-Marc Vanden-Broeck University College London ICERM , April 2017
COWORKERS Zhan Wang Tao Gao Paul Milewski Emilian Parau Olga Trichtchenko 1
2
3
4
5
6
• inviscid, incompressible, irrotational • gravity • surface tension • steady 7
NON SYMMETRIC WAVES....in two and three dimensions • Periodic waves • Solitary waves • Generalised Solitary waves flexural waves (thursday.....Olga....). stability 8
PART 1 TWO-DIMENSIONAL FLOWS 9
FORMULATION GRAVITY-CAPILLARY WAVES φ xx + φ yy = 0 φ y = φ x ζ x on y = ζ ( x ) 1 y ) + gy − T 2( φ 2 x + φ 2 ρ κ = B on y = ζ ( x ) φ y = 0 on y = − h FLEXURAL WAVES D s κ + 1 ρ ( ∂ 2 2 κ 3 ) T = surface tension , D = flexural rigidity ζ xx κ = x ) 3 / 2 (1 + ζ 2 10
PERIODIC and SOLITARY waves Gravity waves ental educational concepts of linear and non-linear ions of nonlinear equations from the book High-Temperature he Nonlinear Mechanism and Tunneling Measurements (Klu s, Dordrecht, 2002, pages 101-142) is given. There are a few tons. For example, there are topological and ons. Independently of the topological nature of solitons, Craig W. and Sternberg P. (1988) 11
Gravity-capillary solitary waves ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� 12
NUMERICAL METHODS boundary integral equation methods, series trun- cation methods or ANY OTHER METHODS.... 1. Iterations by using Newton’s method 2. Continuation methods 3. INITIAL GUESS: bifurcations, symmetry breaking... 13
ρg ) 1 / 2 (reference length), Dimensioless variables: ( T ρg 3 ) 1 / 2 (reference time) ( T amplitude: A phase velocity: c energy: E � η � ∞ � ∞ E = 1 y ) dydx + 1 −∞ ( φ 2 x + φ 2 −∞ η 2 dx 2 2 −∞ � ∞ � 1 + η 2 + −∞ ( x − 1) dx Boundary integral equation, Newton iterations, continuation 14
Gravity capillary solitary waves infinite depth ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� ������������������������������������������������������� 15
(a) E 0.2 A 0.15 C � (0) D 0.1 1.395 1.405 0.05 C F D 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.4142 0 (b) − 0.2 B � (0) − 0.4 − 0.6 − 0.8 Speed 16
(c) 6 5 4 Energy 3 2 1 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.4142 Speed
(a) E 0.2 A 0.15 C � (0) D 0.1 1.395 1.405 0.05 C F D 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.4142 0 (b) − 0.2 B � (0) − 0.4 − 0.6 − 0.8 Speed Zufiria (1987), Buffoni, Champneys and Toland (1996), Yang and Akylas (1997), Champneys and Groves (1997)....... 17
1.4 (a) 0.66 C � 1.3 0.62 � D 1.2 � A 0.58 � B 1.1 0.54 1 Energy 0.5 0.9 1.405 1.4065 1.408 0.8 0.7 C � � B A 0.6 1.37875 1.37879 D � � 0.5 1.38 1.385 1.39 1.395 1.4 1.405 1.41 Speed 18
1.4 (a) 0.65 � 3 1.3 � 4 � 1 0.6 1.2 � 5 � 2 � 6 1.1 0.55 1 0.5 1.405 1.406 1.407 1.408 1.409 0.9 0.8 � 5 0.7 � 3 � � 2 1 6 0.6 � 4 � 0.5 1.3787 1.3788 1.3845 1.3855 0.4 1.375 1.38 1.385 1.39 1.395 1.4 1.405 1.41 (b) (c) 0.15 0.15 0.1 0.1 0.05 0.05 0 0 − 0.05 − 0.05 − 0.1 − 0.1 − 0.15 − 0.15 − 0.2 − 0.2 0.15 0.1 0.1 0.05 0.05 0 0 − 0.05 − 0.05 − 0.1 − 0.1 − 0.15 − 0.15 − 0.2 − 0.2 − 0.25 − 0.25 − 40 − 20 0 20 40 60 80 − 80 − 60 − 40 − 20 0 20 40 60 80 0.15 (e) (d) 0.2 0.1 0.1 0.05 0 0 − 0.05 − 0.1 − 0.1 − 0.2 − 0.15 − 0.3 0.2 0.1 0.1 0.05 0 0 − 0.05 − 0.1 − 0.1 − 0.2 − 0.15 − 0.3 − 0.2 − 80 − 60 − 40 − 20 0 20 40 60 − 100 − 80 − 60 − 40 − 20 0 20 40 60 80 100 19
(a) E 0.2 A 0.15 C � (0) D 0.1 1.395 1.405 0.05 C F D 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.4142 0 (b) − 0.2 B � (0) − 0.4 − 0.6 − 0.8 Speed 20
10 (a) 1.5 9 1.3 � 6 5 � 8 � 1 1.1 7 6 0.9 � 2 Energy 5 1.398 1.402 1.406 � 6 4 � 5 � 4 3 � � 3 3 2 � 4 1.258 1.261 � 1 1 � 2 1.332 1.342 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 Speed 21
10 (a) 1.5 9 1.3 � F E � 8 � A 1.1 7 6 0.9 B � Energy 5 1.398 1.402 1.406 � F 4 E � � D C � C � 3 2 � D 1.258 1.261 � A 1 B � 1.332 1.342 0 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 Speed 0.2 0.2 (c) (b) 0.1 0.1 0 0 − 0.1 − 0.1 − 0.2 − 0.2 − 0.3 − 0.3 − 0.4 − 0.4 − 0.5 0.2 0.2 0.1 0.1 0 0 − 0.1 − 0.1 − 0.2 − 0.2 − 0.3 − 0.3 − 0.4 − 0.4 − 0.5 − 0.5 − 40 − 20 0 20 40 60 − 60 − 40 − 20 0 20 40 60 (d) (e) 0.2 0.15 0.1 P 0.1 0 0.05 − 0.1 − 0.2 0 − 0.3 − 0.05 − 0.4 − 0.1 − 0.5 − 0.6 − 0.15 − 0.7 − 0.2 0.15 0.2 0.1 0.1 Q 0 0.05 − 0.1 0 − 0.2 − 0.05 − 0.3 − 0.4 − 0.1 − 0.5 − 0.15 − 0.6 − 0.2 − 0.7 22 − 0.8 − 0.25 − 25 − 20 − 15 − 10 − 5 0 5 10 15 20 25 30 − 80 − 60 − 40 − 20 0 20 40 60 80
HYDROELASTIC WAVES Tao Gao, Zhan Wang 23
0.8 0.6 0.4 0.2 0 − 0.2 − 0.4 − 0.6 − 0.8 − 1 − 150 − 100 − 50 0 50 100 150 24
GENERALISED SOLITARY WAVES 25
0 26
Clamond et al, Journal of Fluid Mechanics (2015) 784, pp 664-680 27
0 28
0 Wang Z., Parau E.I. , Milewski P.A. and Vdb (2014) Proc. Roy. Soc. A 470 29
0 (1) -0.2 0 (2) -0.2 -40 0 40 0 (1 † ) -0.2 0 (2 † ) -0.2 -40 0 40 0 (1 ‡ ) -0.2 0 (2 ‡ ) 30 -0.2 -40 0 40
Non-symmetric PERIODIC gravity-capillary waves Tao Gao and Zhan Wang Zufiria (1987) Shimizu ans Shoji (2012) 31
Symmetric waves 1 0.5 0 -0.5 -1 -1.5 0 2 4 6 8 10 12 14 16 18 20 32
Non-symmetric waves 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 -0.12 -0.14 -0.16 -7 -6 -5 -4 -3 -2 -1 0 33
Non-symmetric waves 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -6 -5 -4 -3 -2 -1 0 34
Non-symmetric waves 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -7 -6 -5 -4 -3 -2 -1 0 35
Non-symmetric waves 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -6 -5 -4 -3 -2 -1 0 36
0.14 0.13 0.12 0.11 q 0.1 0.09 0.08 0.07 0.04 0.06 0.08 0.1 0.12 0.14 0.16 b 6 37
THREE-DIMENSIONAL FLOWS Use Green’s theorem instead of Cauchy inte- gral equation formula. Emilian Parau, Mark Cooker, VdB Olga Trichtchenko, Paul Milewski, Emilian Pa- rau, VdB 38
39
0.5 z 0 − 0.5 − 1 − 1.5 40 20 0 y 40 30 − 20 20 10 0 − 10 x − 40 − 20 − 30
0.5 z 0 − 0.5 − 1 40 30 41 20 − 1.5 10 y − 30 − 20 − 10 0 0 10 20 30 x
0.5 z 0 − 0.5 40 − 1 30 20 42 − 1.5 10 − 30 − 20 y − 10 0 10 0 20 30 x
NON-SYMMETRIC 3D WAVES Model: Akers and Milewski (2009) √ √ 2 2 4 H [ u − u xx − 2 u yy ] + α ( u 2 ) x = 0 u t + 2 u x − Zhan Wang 43
44
45
Three dimensional flexural waves Olga.... 46
47
48
Conclusions New non-symmetric gravity-capillary waves for the Euler’s equations in 2D (solitary waves) New non-symmetric flexural waves for the Eu- ler’s equations in 2D (solitary waves) New non-symmetric gravity-capillary waves for a model in 3D (solitary waves) New non-symmetric generalised solitary waves in 2D New non-symmetric periodic gravity-capillary waves in 2D 49
Recommend
More recommend