lyman alpha and ionizing radiative transfer in simulations of high-z galaxies daniel kasen (UCB/LBNL) daniel ceverino, avishai dekel, michele fumagalli, joel primack, x prochaska
lyman alpha and ionizing radiative transfer in simulations of high-z galaxies model MW3 ceverino et al. (2010)
lyman alpha and ionizing radiative transfer in simulations of high-z galaxies z = 2.3 M v = 3.5 x 10 11 M sun R v = 72 kpc model MW3 ceverino et al. (2010)
Lyman alpha blobs LAB 2 (z = 3.09) wilman et al., 2005 L = 10 44 ergs s -1 75 kpc
steidel et al., 2011 ( < z > = 2.65 stacks) typical sensitivity c o lyman alpha n t i n u u m
origin of the lyman alpha blobs • cooling emission from infall e.g., haiman+ 2000, fadal+ 2001, dijkstra&loeb 2009, goerdt+ 2010, faucher-giguere+ 2010 • photoionization by stars but c.f. matsuda+ 2004, nilsson+ 2006 • photoionization by AGN e.g., geach+ 2009 • scattering in circumgalactic gas/outflows e,g., zheng+ 2010, steidel+ 2011 what does theory predict when line scattering, photoionization and dust are taken into account?
gas column temperature stellar luminosity dust optical depth gas density
transport of ionizing and L radiation multi-wavelength monte carlo transport no on the spot approximation arbitrary distribution of ionizing sources isotropic UVB plus ~5000 star particles using an AMR grid 10 levels of refinement, x ~ 60 pc for 280 kpc box dust absorption + scattering included dust opacity constructed from metal distribution transport done in post-processing assumes ionization equilibrium, approximate heating scattering/absorption on unresolved scales?
lyman alpha cooling emission no stellar or AGN photoionization; L = 7 x 10 42 ergs/s c -2 ) s s -1 c m -2 a r c s e b r i g h t n e s s ( e r g L s u r f a c e l y m a n a f esc,l = 55% l p h a e m i s s i o n ( e r g s s -1 k p c -2 ) optically thin approximation with line scattering and dust e.g., goerdt et al. (2010)
lyman alpha cooling emission lyman alpha no stellar or AGN photoionization normalized flux velocity (km/s)
orientation dependence of L emission MW3 z = 2.33 (cooling emission, no photoionization)
orientation dependence of L emission MW3 z = 2.33 (cooling emission, no photoionization)
Lyman alpha blobs LAB 2 (z = 3.09) wilman et al., 2005 L = 10 44 ergs s -1 75 kpc
MW3 z = 2.33 neutral hydrogen column depth (cm f esc,uv = 27% f esc,uv = 6.8% - 2 ) see fumagalli+2011
c -2 ) s s -1 c m -2 a r c s e b r i g h t n e s s ( e r g L s u r f a c e MW3 z = 2.33 SFR = 30 M sun /yr f esc,L = 5% lyman alpha emission (ergs s -1 kpc -2 )
L AGN = 10 45 ergs/s MW3 z = 2.33 lyman alpha emission (ergs s -1 kpc -2 )
H alpha from photoionization surface brightness (ergs s -1 cm -2 arcsec -2 ) emission (ergs s -1 kpc -2 )
MW3 z = 2.3
dependence on mass/redshift model SFG1 gas column density z = 4.5 z = 3.5 z = 2.3 R v = 39 kpc R v = 71 kpc R v = 114 kpc
dependence on mass/redshift model SFG1 lyman alpha emission UVB + stars UVB + stars UVB + stars z = 4.5 z = 3.5 z = 2.3 R v = 39 kpc R v = 71 kpc R v = 114 kpc
summary Extended lyman alpha emission (blobs) a multi-faceted phenomenon Cooling emission with transport produces general features of some LABs (but line profiles, temperature uncertainty?) Photoionization by stars/AGN produces extended emission tracing out circumgalactic gas No scattering in outflows here, but we should consider a multi-phase medium
Recommend
More recommend