Biennial workshop on Low Temperature Detectors SuperMS � RIIF � LTD-1(Munich) 1987 LTD-13, LTD-13, US, 2009 LTD-14, Japan again or EU?, 2011 The Neutrinos for everybody AIST, JAXA, Uni. Tokyo, JSPS First LTD in Asia LTD Neutrinos, Dark matters SuperMS � RIIF � Nam (NIST), SSPD +Semi., infrared Kilbourne (NASA), Irwin (NIST), TES+SQUID, X-ray Wang (NICT), SSPD+Semi., infrared Mitsuda (JAXA) Fukuda (AIST), TES+SQUID, infrared AIST SQUID X-ray satellite + Quantum communication #!! Constellation-X ! 1.55 � m ('! 2.27+/-0.17 eV � )*& (!! 400 kHz counting TES 2 ms � ,-.)/0123) "'! "!! + &'! &!! )*" '! )*( )*# ! ! "! #! $! %! &!! &"! &#! ,45))67 Wang (NICT +AIST), SSLD+Semi., atoms to proteins Friedrich (LLNL) Ohkubo et al .(AIST), STJ+FET, atoms to proteins Enss (Heidelberg), STJ+Semi. SR MMC+SQUID, X-ray Material analysis with synchrotron radiation Nuclear fuels IgG Biomolecules The largest particle detector
Why do we need superconductors ? SuperMS � Superconducting detectors for particles RIIF � from atoms to proteins M. Ohkubo, AIST SuperMS � RIIF � 3-30 keV 3 keV + Acetone: 100 km/s IgG: 2 km/s molecules IgM: 770 m/s Electrons ! ~MeV � v atoms v 241 Am 5 eV Projected range !"#$%&'()& � -particle < 10 nm 16,000 km/s or landing detector The answer is because superconducting detectors are very good phonon sensors.
E Band structure [100,000]:proteins [20]:amino acids [64]:codon(three bases → an amino acid) [4]:bases ATGC Valence band Conduction band Superconducting phonon detection SuperMS � RIIF � DOS of electrons DOS of gap Density of states phonons Si Nb DOS of quasielectrons gap Energy( � ) � 0 E g 2 �� Debye energy( � D ) =1.12 eV =3.1 meV =24 meV (Nb) =56 meV (Si) No mass dependence & Cooper-pair � Kinetic energy measurement E F � Nb for biomolecules even at landing 2 � =~meV � Si What do we measure with superconducting devices ? SuperMS � RIIF � nuclear membrane ! ribosome ! DNA nucleus RNA polymerase ! Golgi complex protein ! Mitochondria RNA nuclear pore ! Ribosomes 15 � m Proteomics
UV-laser MCP Ground High Voltage (Nobel prize in 2002) MALDI 20 keV Biomaker discovery SuperMS � RIIF � MRI T2 55 kDa pathological diagnosis ! IL-2R on B cell Malignant lymphoma in the right thorax (Cancer in lymphatic system) Time-of-flight (TOF) mass spectrometer SuperMS � RIIF � t � Matrix-assisted laser desorption ionization Superconducting detectors 100% 55 kDa Detection efficiency 4000 Detection efficiency for a biomarker,sIL-2R, is * ! 2-3 %. 0 Molecular mass
x10 6 SE e Conventional particle detectors SuperMS � RIIF � Microchannel plate detector 3-30 keV for biomolecules E Secondary electron multiplier 10 mm (very poor E resolution , 100% < 4,000 Da) 3-30 keV (4 eV/C) Si surface barrier detector for high energy particles ~50 nm Au or Al Si Electron-hole pair creation (no sensitivity for biomolecules) Our particle detectors SuperMS � RIIF � 10 mm FDP-53 Y. Chen et al. (Wed) can be seen by a digital camera.
Phonon creation SuperMS � RIIF � 200 � m commonly used detector quality • � Uncovered Nb electrode • � Large junction • � Extremely low leakage current Particles MW = 12 - 2,000,000 E = 3 - 20 keV SuperMS � RIIF � Ag n C n F 2 n +2 � n = 1,3,5,7 C 12 Acetone 58.08 Perfluorokerosene 900 � 107.9 - 755 C60 720 CH 3 COCH 3 Peptides 2,000 immunoglobulin(antibody) Lysozyme(enzyme) 14.6kDa Ribosome BSA 66.4 kDa 2.5 MDa polystyrene IgG cerebrum of mouse 200 kDa 100k - 2M Da 146 kDa
Abnormal protein (prion) C60 SuperMS � RIIF � SiO 2 700 nm 100 � m-square 32% 32% Protein aggregation SuperMS � RIIF � ++ 1 Lysozym AXIMA (14,350 Da enzyme, nasal drip) Aggregation cause an amyloidosis (renal damage). 2 3 4 5 6 100kDa 1 � -helix + � + � -sheet Super MS 2 3 ++ 4 5 6 7 8 9 10 11 12 250kDa
FDP-54 Y. Kobayashi et al. (Wed) SuperMS � RIIF � IgG Fragmentation in a high mass range Superconducting stripline detector (SSLD) SuperMS � RIIF � Superconducting single photon detector (SSPD) NbN(50 x 50 � m, t = 7 nm) Superconducting nanowire detector (SND) Transition edge sensor (TES) Superconducting strip after Andrew in 1949 MALDI ion source Cryostat Fabricated by Z. Wang et al. , NICT 4 K NbN nanowire detector 200 nm Time resolution is essential for MS. K. Irwin(NIST) can be faster than 100 ps R. Cristiano, C.N.R. - Institute of Cybernetics (90 ns in STJ)
Detection of a peptide and protein SuperMS � RIIF � 1.3 kDa Falltime = 35 ns 66.4 kDa FDP-52 K. Suzuki, et al. (Wed) SuperMS � RIIF � MCP/scintillator/photomultiplier ++ + 540 ps risetime (90 ns in STJ). bovine serum albumin (BSA) 64.4 kDa Mass independent sensitivity is expected. First mass spectrum SSLD with SSLD The same peak ratio as that by STJ Broad peak is due to the sample.
UV laser 337nm High Voltage 0.3 K 25K 3K MCP Ground MALDI 0.3 K A superconducting particle spectrometer SuperMS � RIIF � 3He pot CH7-1 100 channel Needs for superconducting data processing TOF and kinetic energy • � STJ: 1ns, 0.5pA/ � Hz, 100ch ( t and E ) Mark of molecule landing PT 3 He NbTi • � SSLD: 0.1ns 10ch ( t only) analog 25K 3K 8 m m IR 100 STJ array Digital(5ns) Ion sources for atoms and macromolecules SuperMS � RIIF � MALDI TOF-MS MALDI TOF ~ 2 MDa, ~20 keV Double-focusing MS IR-MALDI (EI/CI/FAB) ESI 9.4T and 12T FT-MS < 4,500Da, < 3 keV N. Zen, et al. Alzheimer's disease !
岡崎統合バイオ MS market in Japan SuperMS � RIIF � ESI MALDI, ESI MALDI, ESI Nobel prize Nobel prize Superspectroscopy group SuperMS � RIIF � A. Kurokawa, M. Ukibe, T. Itatani, I. Chen, K. Takahashi, Y. Chen, S. Shiki, K. Suzuki, Y. Shimizugawa, K. Chiba, Y. Kobayahsi, kids, and M. Ohkubo Particles H. Sato K. Teramoto T. Kinumi 7 July, 2007 Y. Shigeri M. Setou Y. Sato S. Tomita S. Hayakawa S. Miki Z. Wang 9AM 16 May, 2006
Recommend
More recommend