The CKM Matrix ⎛ ⎞ ⎛ ⎞ ' d d • V connects quark mass ⎜ ⎟ ⎜ ⎟ = ' s V s eigenstates to weak interaction ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ' ⎝ ⎠ ⎝ ⎠ b b eigenstates and thus describes coupling strength of quark transition W − quarks to charged current i weak interaction j G F V ij ⎛ ⎞ V V V ud us ub ⎜ ⎟ = ⎜ V V V V ⎟ cd cs cb ⎜ ⎟ ⎝ ⎠ V V V td ts tb Lepton Photon 2009 Expt. Status of the CKM Matrix (S.Prell) 56
The CKM Matrix ⎛ ⎞ u … reflects size of ⎜ ⎟ matrix elements = ⎜ V ⎟ c CKM ⎜ ⎟ (areas of squares | 2 ) proportional to |V ij ⎝ ⎠ t d s b • In 3-generation Standard Model CKM matrix is a unitary 3x3 matrix • Search for physics beyond the SM by testing unitarity of CKM matrix ! Lepton Photon 2009 Expt. Status of the CKM Matrix (S.Prell) 57
CKM Matrix Element Magnitudes e − e − e − V ud V us V ub ν ν ν n K B p π π e − e − e − V cb V cd V cs ν ν ν D D B d D π K V td W V ts V tb b B d B s B s B d t Lepton Photon 2009 Expt. Status of the CKM Matrix (S.Prell) 58
⎛ ⎞ V V V ud us ub ⎜ ⎟ V V V ⎜ ⎟ cd cs cb CKM matrix unitarity check ⎜ ⎟ ⎝ ⎠ V V V td ts tb = ± = ± = ± × Inputs: | | 0.97424 0.00022 | | 0.2252 0.0009 | | (4.07 0.38) 10 -3 V V V ud us ub = ± = ± = ± × | | 0.231 0.010 | | 1.03 0.04 | | (40.6 1.3) 10 - 3 V V V cs cd cb = ± × = ± × = ± × | | (8.1 0.6) 10 | -3 | (38.7 2.3) 10 | -3 | (1.00 0.10) 10 -3 V V V ts td tb 2 + 2 + 2 − = − ± − σ | | | | | | 1 0.0004 0.0007 ( 0.6 ) V V V ud us ub + + − = + ± + σ 2 2 2 | | | | | | 1 0.11 0.08 ( 1.3 ) V V V cd cs cb Magnitudes of CKM + + − = + ± + σ 2 2 2 | | | | | | 1 0.00 0.20 ( 0.0 ) V V V matrix elements td ts tb 2 + 2 + 2 − = + ± + σ fulfill unitarity well | | | | | | 1 0.003 0.005 ( 0.6 ) V V V ud cd td + + − = + ± + σ 2 2 2 | | | | | | 1 0.11 0.08 ( 1.4 ) V V V us cs ts + + − = + ± + σ 2 2 2 | | | | | | 1 0.00 0.20 ( 0.0 ) V V V ub cb tb From V cb and V ts λ = ± × 2 -3 (40.1 1.1) 10 A Lepton Photon 2009 Expt. Status of the CKM Matrix (S.Prell) 59
Rare B decays Toru Iijima (Nagoya)
cs mesons Recently observed: � D* s0 (2317) D s1 (2460) inconsistent with model predictions D s1 (2700) → DK in B → DDK, D sJ (2860) → DK in e + e - → DKX � New study of inclusive D ( * ) K from e + e - → D ( * ) KX arXiv: 0908.0806 ( 2700 ) confirmed in D*K D 1 s D s D (2700) (2700) D D s2 (2573) (2573) � Fit to � s1 1 s2 Fit to = ± + 12 2710 2 MeV M − 7 M(DK) M(DK) D sJ (2860) D (2860) Γ = ± + 39 149 7 MeV sJ − 52 and and ( 2860 ) confirmed in D*K D D s D (3040 ( 3040) ) D D s (2700) (2700) sJ sJ J M(D*K): : s1 1 M(D*K) + D D sJ (2860) (2860) = ± 5 2862 2 MeV M sJ − 2 Γ = ± ± 48 3 6 MeV M(D 0 K + ) M(D* * + K s ) M(D 0 K + ) M(D + K s0 0 ) 470fb - -1 1 470fb ( 3040 ) new, only in D*K D sJ = ± + 30 3044 8 MeV D D s2 (2573) (2573) M − s2 D s1 (2700) D sJ (2860) 5 + Γ = ± 46 239 35 MeV − 42 � D � D s (2700) and D sJ (2860) have have 1 (2700) and D sJ (2860) s1 D s D (2700) (2700) s1 1 natural J P P =1 =1 - - ,2 ,2 + + ,3 ,3 - - ... ... natural J D sJ D (2860) (2860) sJ D* helicity angle D sJ D sJ (3040) (3040) not seen in not seen in DK DK � � unnatural J P =0 - ,1 + ,2 - ... unnatural J P =0 - ,1 + ,2 - ... M(D + K s ) M(D + K s0 0 ) Interpretation: n=2 radial excitations? L=2 orbital excitations? Interpretation: n=2 radial excitations? L=2 orbital excitations?
X(3872) X(3872) → J/ ψπ + π - observed in B → XK by Belle � � Confirmed by Babar, CDF, DØ arXiv:0809.1224 B + + → XK + + → XK B Γ X < 2 . 3 MeV ( 3872 ) N=125± N=125 ±14 14 657M BB B 657M B 2.4 fb - 2.4 fb -1 1 Preliminary M(J/ ψπ + π - ) M(J/ ψπ + π - ) arXiv:0810.0358 [ ] MeV B → KD 0 D *0 Mode Mass ( ) D * → D γ → ψ ππ ± 3872 07 3871 . 4 0 . 6 X J PDG ( ) → ψ ππ ± ± 3872 3871 . 46 0 . 37 0 . 07 X J Belle ( ) → ψ ππ ± ± 3872 3871 . 61 0 . 16 0 . 19 X J CDF + ± 3871 . 8 0 . 4 M M 0 * 0 D D D * → D 0 π 0 * 0 657M BB B 657M B + → 0 0 . 5 ± ( 3872 ) 3872 . 6 0 . 4 X D D Belle − 0 . 4 * 0 + → 0 0 . 7 ± ( 3872 ) 3875 . 1 0 . 5 X D D Babar − 0 . 5 � X(3872) mass below or above D 0 D 0 *? ( ) � Peak at D 0 D 0 * threshold is from X(3872)? → * Br X DD ~ 10 ( ) → ψ ππ Br X J
Y family e + e - → open charm open charm γ γ ISR e + e - → ISR Y(4008), Y(4260), Y(4360), Y(4660) � PRD77,011103(2008) don’t match the peaks in D (*) D (*) x-sections DD � 90%CL limits for Y(4260): ? ( ) ( ) ( ) * ψ (4160) Y(4350) * * Br D D Br D D Br D D DD * < < < 1 34 40 ( ) ( ) ( ) ψππ ψππ ψππ / / / Br J Br J Br J PRD79,092001(2009) Widths for ψππ transition � PRL98, 092001 (2007) Y(4008) too large for conventional charmonia Y(4260) ψ (4415) D * D * � Y(4260) is DD 1 molecule, ccg hybrid? ψ (4040) DD 1 [ → DD* π ] decay should dominate Y(4660) but no signal found PRL100,062001(2008) DD π 0908.0231[hep-ex] ( ) DD* π ( ) * → π Y(4260) 4260 Br Y D D PRL101, 172001(2008) < 9 ( ( ) ) ψ (4415) → ψππ 4260 / Br Y J Λ c + Λ c – Y(4660) ? Y(4660) ?
Z(4430) ± →ψ (2S) π ± PRL100, 142001 (2008) Found in ψ (2S) π + from B →ψ (2S) π + K. Z parameters from fit to M( ψ (2S) π + ) � � Confirmed through Dalitz-plot analysis of B →ψ (2S) π + K � B →ψ (2S) π + K amplitude: coherent sum of Breit-Wigner contributions � Models: all known K* → K π + resonances only all known K* → K π + and Z + →ψ (2S) π + � favored by data Significance: 6.4 6.4 σ σ Significance: – ̶̶ – – – ̶̶ fit fit for model for model with K* with K*’ ’s only s only ) + ) π + Z + (4430) 657M BB B 657M B (2S) π – ̶̶ – – – ̶̶ fit fit for model for model with K* with K*’ ’s and Z s and Z ψ (2S) ( ψ = + + 2 ( 15 19 4433 M 2 M MeV M − − 12 13 + + Γ = 86 74 107 MeV − − 43 53 K 2 *(1430) K*(890) PRD80, 031104 (2009) M M 2 2 ( ( ψ ψ (2S) (2S) π π + + ) ) after after K* veto K* veto M 2 M 2 (K (K π π + + ) ) � [cu][cd] tetraquark? neutral partner in ψ ’ π 0 expected � D*D 1 (2420) molecule? should decay to D*D* π
Discovery of η b Expected production: M1 transition from Y(3S), Y(2S) →γη b � − 2 s m η � monochromatic line in inclusive γ spectrum = b E γ 2 s PRL 100, 06200 (2008) arXiv:0903.1124 14 4K K ± 3.5K K Non-peaking 1 ± 3.5 19K K ± 2K K 19 ± 2 Background (>3.5 >3.5 σ σ ) ) ( (10 σ σ ) ) (10 subtracted χ bJ γ ISR χ bJ γ ISR η b η η b η b b 120M Y Y(3S) (3S) 100M Y Y( (2 2S) S) 120M 100M ( ) ( ) + + M η = 2 ± M η = 4 ± 3 . 1 4 . 6 9388 . 9 2 . 7 MeV 9392 . 9 1 . 8 MeV Peaking background: Peaking background: − − . 3 . 8 b b Y(nS) → → χ χ bJ γ soft Y(nS) bJ γ soft � combined result: � Y Y(1S) (1S) γ γ hard � hard ( ) η = ± 9390 . 4 3 . 1 MeV M b e + e - → γ γ Y(1S) e + e - → Y(1S) ( ( ) ) ( ) ISR ISR − η = ± 1 69 . 9 3 . 1 MeV ~ 60 MeV M Y S M Theory b Exclusive search difficult: hadronic decays BF~10 -5 ( η b → gg → qq : OZI � suppression), large multiplicities
b-baryons at Tevatron Σ b+ : CDF in 2006 Ξ b- : CDF,DØ in 2007 � Observation of Ω b- [ssb] by DØ � Ω b- → J/ ψΩ - fully reconstructed, special tracking for long lived particles, production rate wrt Ξ b- → J/ ψΞ - ( ) Ω b = ± ± 6165 10 13 MeV ( ) M ± ± σ 17 . 8 4 . 9 0 . 8 5 . 4 ( ) < Ω < : 5 . 94 6 . 12 Theory M GeV b ( ) ( ) → Ω Ω → ψ Ω f b Br J + = ± 0 . 14 0 . 80 0 . 32 b b ( ) ( ) − 0 . 22 → Ξ Ξ → ψ Ξ f b Br J b b PRL101, 232002 (2008) Ω b- in CDF (4.2 fb -1 ): simultaneous mass vs lifetime fit � ( ) Ω = ± ± 6054 . 4 6 . 8 0 . 9 MeV M ( ) + σ 16 6 5 . 5 b − 4 ( ) + ( ) τ Ω = 0 . 53 ± 1 . 13 0 . 02 < τ Ω < ps : 0 . 83 1 . 67 Theory ps − 0 . 40 b b arXiv:0905.3123 Ω b mass from CDF and DØ Ø different. Ω b- - mass from CDF and D different. The same baryon observed? The same baryon observed?
Conference dinner
Hamburg: international seaport
Recent results on tau and charm Yifang Wang (IHEP, Beijing)
Neutrino mass Christian Weinheimer (Munster)
My Conclusions • Very educational conference! • Results illustrate the power of high statisics and long running expts (HERA, CDF/D0, BESII, BaBar etc • MUCH in PP is of interest and great importance outside the LHC regime. • With its marked concentration on LHC, is UK PP aligned on right lines?
Extra /spare slides • Not shown in the talk.
QCD at the LHC Nigel Glover (Durham)
Fundamental measurement
7 GeV vs 10 TeV vs 14 TeV Ratios of cross-sections at 7/10 and 10/14 TeV for processes induced by gg and qq J.S tirling J.S tirling • Going from 14 to 10 TeV, more difficult to create high mass objects … • Going from 10 to 7 TeV, another similar suppression factor applies • Examples of suppression of cross sections going from 14 to 7 TeV W, Z ~45% 120 GeV Higgs ~30% 1 TeV Z’ ~18% K.Jon-And, Lepton Photon, Hamburg, 17/8/2009 89
Direct Photon Production direct photons emerge unaltered from the hard subprocess � direct probe of the hard scattering dynamics � sensitivity to PDFs (gluon!) …but only if theory works also fragmentation contributions: (all quark/anti-quark subprocesses) suppress by isolation criterion 90 � observable: isolated photons
Isolated Photon + Jet Phys. Lett. B 666, 2435 (2008) investigate source for disagreement � measure more differential: tag photon and jet • � reconstruct full event kinematics L = 1 fb - L = 1 fb -1 1 measure in 4 regions of y γ / y jet • - photon: central - jet: central / forward - same side / opposite side discrepancies in data/theory � figure out what is missing… • higher orders? • resummation? p T (GeV) γ • …??? 91
Jet Production largest high pT cross section at a hadron collider Unique sensitivity to new physics : � highest energy reach - new particles decaying to jets, - quark compositeness, jet - extra dimensions, - …(?)… xT jet In the absence of new physics: theory @NLO is reliable (±10%) � Precision phenomenology - sensitivity to PDFs � high-x gluon - sensitive to 92
Summary Solid methods • Precision results • Consistency between experiments • � Impact! And we have only started: This talk: results with up to 2.7 fb -1 • More to come � 7 fb -1 delivered / 12 fb -1 by 2011 • 93
Measuring an Electric Dipole Moment
Measuring EDM of muon
Novel Detector Technologies Hitoshi Yamamoto (Tohoku) (Photomultiplier Tubes) • Some new developments (Hamamatsu) – Low temperature operation • Operation in Liq. Xe (- 110 deg C) etc. • Avoid photocathode current saturation • Now PMT can be directly immersed in Liq Ar, Liq Xe. (e.g. Dark Matter experiments)
Anti-Proton Fraction Nothing surprising seen in anti- -proton / proton ratio proton / proton ratio Nothing surprising seen in anti Anti- -proton abundance consistent with expectations for secondary CR proton abundance consistent with expectations for secondary CR Anti production off the Interstellar Medium production off the Interstellar Medium
Recommend
More recommend