low rank interaction log linear model for contingency
play

Low rank Interaction Log-linear Model for Contingency Table Analysis - PowerPoint PPT Presentation

Low rank Interaction Log-linear Model for Contingency Table Analysis Genevi` eve Robin Ecole Polytechnique genevieve.robin@polytechnique.edu advisors: Julie Josse and Eric Moulines February 16, 2017 Genevi` eve Robin (Polytechnique)


  1. Low rank Interaction Log-linear Model for Contingency Table Analysis Genevi` eve Robin ´ Ecole Polytechnique genevieve.robin@polytechnique.edu advisors: Julie Josse and ´ Eric Moulines February 16, 2017 Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 1 / 39

  2. Overview Motivations 1 Generalized additive main effects & multiplicative interaction 2 thresholded (GAMMIT) statistical guarantees optimization algorithm Automatic selection of the regularization parameter 3 cross validation quantile universal threshold Experiments 4 Data analyses 5 Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 2 / 39

  3. Motivations Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 3 / 39

  4. High dimensional count data Single-cell RNA sequencing (counts of genes in cells) Image processing (number of photons on a grid) Ecological data (abundance of species across environments)  2 0 17 5   ∈ N m 1 × m 2 Y = 4 1 3 9  23 7 7 2 Y ij counts occurrences of ( i , j ) Y ij independent. Estimate E [ Y ij ] = µ ij ⇒ Denoise and visualize data Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 4 / 39

  5. Ecological data Alop.alpi Alch.pent Geum.mont Pote.aure Sali.herb AR26 0 0 2 2 0 AR08 1 0 2 1 0 AR05 0 0 3 3 0 AR06 0 0 3 0 0 AR69 1 0 2 2 2 AR32 2 0 3 3 1 AR40 2 3 3 4 0 Table: Excerpt of Aravo dataset. 82 species of plants across 75 environments in the French Alps (Dray and Dufour, 2007). How do species interact with environments ? Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 5 / 39

  6. Log-linear model Observation matrix Y ∈ N m 1 × m 2 , E [ Y ij ] = µ ij , X ij := log( µ ij ). X ij = α i + β j + Θ ij (1) α i effect of i -th environment β j effect of j -th species Θ ij interaction between i -th environment and j -th species Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 6 / 39

  7. Log-linear model Observation matrix Y ∈ N m 1 × m 2 , E [ Y ij ] = µ ij , X ij := log( µ ij ). X ij = α i + β j + Θ ij (1) α i effect of i -th environment β j effect of j -th species Θ ij interaction between i -th environment and j -th species Θ has rank K < min( m 1 − 1 , m 2 − 1) X ij = α i + β j + ( UDV ⊤ ) ij , UDV ⊤ , the SVD of Θ. (RC model, Goodman, 1985; log-bilinear model, Falguerolle, 1998; GAMMI, Gower, 2011) Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 6 / 39

  8. Log-linear model with known covariates Environment characteristics, species traits are known. Aspect Slope Form PhysD ZoogD Snow Height Spread Angle Area Thick SLA N mass Seed AR26 5 0 3 20 no 140 Alop.alpi 5.00 20 20 190.90 0.20 15.10 203.85 0.21 AR08 8 20 3 60 some 160 Poa.alpi 8.00 15 45 160.00 0.18 10.70 204.37 0.32 AR05 9 10 4 20 high 150 Alch.pent 2.00 20 15 218.10 0.16 23.70 364.98 0.31 AR06 8 20 3 40 high 160 Geum.mont 5.00 10 15 852.60 0.20 11.30 223.74 1.67 AR69 8 30 2 30 high 160 Plan.alpi 0.50 10 20 40.00 0.22 11.90 242.76 0.33 Pote.aure 3.00 20 15 264.50 0.10 17.50 253.75 0.24 AR32 8 10 5 20 some 160 Sali.herb 1.00 50 60 82.50 0.18 14.70 367.50 0.05 AR40 8 15 4 10 some 180 Figure: Environment (left) an species (right) covariates for Aravo data (excerpt) X ij = ( α R ) ij + ( C β ) ij + Θ ij (2) Known parameters: R ∈ R K 2 × m 2 matrix of row covariates, C ∈ R m 1 × K 1 matrix of column covariates Unknown parameters: α ∈ R m 1 × K 2 , β ∈ R K 1 × m 2 , Θ ij Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 7 / 39

  9. Generalized additive main effects and multiplicative interaction thresholded (GAMMIT) Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 8 / 39

  10. Model We can re-write model X = α R + C β + Θ as X = X 0 + Θ, (3) X 0 ∈ V , Θ ∈ V ⊥ , V 1 linear span of C , V 2 linear span of R ; Π 1 orthogonal projection on V 1 , Π 2 orthogonal projection on V 2 ; V = { X ∈ R m 1 × m 2 ; X = Π 1 X + X Π 2 − Π 1 X Π 2 } ; T orthogonal projector on V ⊥ ; ⇒ Main effects X 0 = Π 1 X + X Π 2 − Π 1 X Π 2 , ⇒ Interaction Θ = T ( X ) Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 9 / 39

  11. Low-rank interaction log-linear model Penalized negative Poisson quasi-log-likelihood for λ > 0 (relaxation of the rank constraint) m 1 m 2 Φ λ = − ( m 1 m 2 ) − 1 � � Y ( X ) ( Y ij X ij − exp( X ij )) + λ �T ( X ) � σ, 1 (4) i =1 j =1 X λ ˆ Φ λ = argmin Y ( X ) , X ∈K γ ] m 1 × m 2 , K = [ γ, ¯ γ > 0, ¯ γ < ∞ compact set. ¯ ¯ ⇒ We recover ˆ Θ λ = T ( ˆ X λ ), Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 10 / 39

  12. Statistical guarantees X true parameter matrix, ¯ ¯ X ij = log( E [ Y ij ]). Theorem � ∇ Φ Y ( ¯ � � Assume µ ≤ E [ Y ij ] ≤ ¯ µ , µ > 0 , ¯ µ < ∞ and λ ≥ 2 X ) σ, ∞ , then � ¯ ¯ 2 � � X λ − ¯ � ˆ X � � � σ, 2 ≤ λ 2 / µ 2 m 1 m 2 18 rk T ( ¯ � � X ) + K 1 + K 2 , (5) m 1 m 2 ¯ K 1 , K 2 number of column and row covariates. Strong convexity of Φ Y � � Φ Y ( ˆ � T ( ˆ σ, 1 ≤ Φ Y ( ¯ � T ( ¯ X λ ) + λ X λ ) � � X ) + λ X ) � � � σ, 1 � Klopp et al. (2015) Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 11 / 39

  13. Statistical guarantees Theorem (Risk bound) Assume σ 2 ≤ Var( Y ij ) ≤ ¯ σ 2 < ∞ ; σ 2 , ¯ σ 2 , ¯ µ ≤ E [ Y ij ] ≤ ¯ µ , µ > 0 , ¯ µ < ∞ , ¯ ¯ ¯ There exists δ > 0 , such that for all i , j, E [exp ( | Y ij | /δ )] < ∞ ; δ 2 (2¯ σ 2 σ 2 ) − 1 , (4 δ 2 / ¯ σ 2 ) 4 � � m 1 + m 2 ≥ max . ¯ � Set λ = 2 c δ ¯ σ 2( m 1 ∨ m 2 ) log( m 1 + m 2 ) / ( m 1 m 2 ) . Then 2 � � � ¯ X − ˆ X λ � � 18 rk T ( ¯ � � µ 2 ( m 1 + m 2 ) X ) + K 1 + K 2 log( m 1 + m 2 ) � σ, 2 σ 2 / ≤ 4 c δ ¯ , m 1 m 2 m 1 m 2 ¯ (6) with probability at least 1 − ( m 1 + m 2 ) − 1 , where c δ is a numerical constant that depends only on δ . Improves rate of Cao and Xie (2016) Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 12 / 39

  14. Optimization problem m 1 m 2 � � Φ Y ( X ) = − ( m 1 m 2 ) − 1 ( Y ij X ij − exp( X ij )) i =1 j =1 X λ = argmin Reparametrize ˆ Φ Y ( X ) + λ �T ( X ) � σ, 1 in X ∈K X λ ˆ = argmin Φ Y ( X ) + λ � U � σ, 1 s.t. T ( X ) = U , (7) X ∈K , U ∈K T where K T image of K by T is compact. (7) is a separable, linearly constrained, strongly convex program on a compact set. ⇒ admits a unique solution. Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 13 / 39

  15. Alternating direction method of multipliers (ADMM) Augmented Lagrangian indexed by τ , Γ dual variable: L τ ( X , U , Γ) = Φ Y ( X ) + λ � U � σ, 1 + � Γ , T ( X ) − U � + τ 2 �T ( X ) − U � 2 2 . At iteration k + 1 ADMM update rules are given by � X , U k , Γ k � X k +1 = argmin X ∈K L τ � X k +1 , U , Γ k � U k +1 = argmin U ∈K T L τ = Γ k + τ � T ( X k +1 ) − U k +1 � Γ k +1 . Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 14 / 39

  16. Update rules X update: gradient descent X k +1 = argmin X ∈K � � U k � σ, 1 + � Γ k , T ( X ) − U k � Φ Y ( X ) + λ � � � + τ 2 � � T ( X ) − U k � � � 2 � 2 � X , U k , Γ k � = ∇ Φ Y ( X ) + Γ k + τ � T ( X ) − U k � ∇ X L τ . Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 15 / 39

  17. Update rules X update: gradient descent X k +1 = argmin X ∈K � � U k � σ, 1 + � Γ k , T ( X ) − U k � Φ Y ( X ) + λ � � � + τ 2 � T ( X ) − U k � � � � 2 � 2 � X , U k , Γ k � = ∇ Φ Y ( X ) + Γ k + τ � T ( X ) − U k � ∇ X L τ . U update: closed form U k +1 = D λ/τ � � T ( X k +1 ) + Γ k /τ , D λ/τ operator for soft-thresholding of singular values at level λ/τ (Cai et al., 2010). Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 15 / 39

  18. Alternating Direction Method of Multipliers (ADMM) Convergence is guaranteed by (Boyd et al., 2011, Theorem 3.2.1) Warm start strategy (Hastie et al., 2015) Run the algo using λ 0 such that T ( ˆ X λ 0 ) = 0 For decreasing values of λ initialize with previous run Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 16 / 39

  19. Automatic selection of λ Genevi` eve Robin (Polytechnique) Low rank Interaction Log-linear Models February 16, 2017 17 / 39

Recommend


More recommend