local update algorithms for random graphs
play

Local Update Algorithms for Random Graphs Romaric Duvignau ees AL - PowerPoint PPT Presentation

Local Update Algorithms for Random Graphs Romaric Duvignau ees AL Journ EA 2014 March 17, 2014 Joint Work with Philippe Duchon Overview Introduction Update Algorithms Deletion Algorithms Insertion Algorithms Conclusion Romaric


  1. Local Update Algorithms for Random Graphs Romaric Duvignau ees AL´ Journ´ EA 2014 March 17, 2014 Joint Work with Philippe Duchon

  2. Overview Introduction Update Algorithms Deletion Algorithms Insertion Algorithms Conclusion Romaric Duvignau Local Update Algorithms for Random Graphs 0 / 11

  3. General Setting Context and Motivations Peer-to-Peer Network (structure maintained locally) Insertion and Deletion : dependence on the update sequence Malicious update sequence may perturb the network Difficulty in designing/analysing update algorithms Our suggestion : maintain exactly a given distribution for the network Romaric Duvignau Local Update Algorithms for Random Graphs 1 / 11

  4. General Setting Context and Motivations Peer-to-Peer Network (structure maintained locally) Insertion and Deletion : dependence on the update sequence Malicious update sequence may perturb the network Difficulty in designing/analysing update algorithms Our suggestion : maintain exactly a given distribution for the network Distribution-preserving update algorithms The network is modelled as a random graph G For each possible vertex set V , G should follow a given target distribution µ V , which is preserved through updates : Insertion : If G ∼ µ V and u �∈ V then I ( G , u ) ∼ µ V ∪{ u } Deletion : If G ∼ µ V and u ∈ V then D ( G , u ) ∼ µ V \{ u } No probabilistic model for update sequences Romaric Duvignau Local Update Algorithms for Random Graphs 1 / 11

  5. Our graph model k -out graphs Simple directed graphs with vertices of outdegree exactly k Good properties (low distances, etc) under the uniform distribution ν V : All N + G ( v ) are independent and each N + G ( v ) is a uniform k -subset of V − v Romaric Duvignau Local Update Algorithms for Random Graphs 2 / 11

  6. Our graph model k -out graphs Simple directed graphs with vertices of outdegree exactly k Good properties (low distances, etc) under the uniform distribution ν V : All N + G ( v ) are independent and each N + G ( v ) is a uniform k -subset of V − v Some properties of uniform n -vertices k -out graphs k Indegrees follow the Binomial( n − 1 , n − 1 ) distribution Connected with asymptotic probability 1 Romaric Duvignau Local Update Algorithms for Random Graphs 2 / 11

  7. Our graph model k -out graphs Simple directed graphs with vertices of outdegree exactly k Good properties (low distances, etc) under the uniform distribution ν V : All N + G ( v ) are independent and each N + G ( v ) is a uniform k -subset of V − v Some properties of uniform n -vertices k -out graphs k Indegrees follow the Binomial( n − 1 , n − 1 ) distribution Connected with asymptotic probability 1 Our goal: Local update algorithms Given a uniform k -out graph G over V : Deletion of u ∈ V : build a uniform k -out graph over V \ { u } Insertion of u �∈ V : build a uniform k -out graph over V ∪ { u } Romaric Duvignau Local Update Algorithms for Random Graphs 2 / 11

  8. Our decentralized and cost model Decentralized model Only use local knowledge and the size of the graph Access to a global primitive RandomVertex() that returns a uniform node of the vertex set Romaric Duvignau Local Update Algorithms for Random Graphs 3 / 11

  9. Our decentralized and cost model Decentralized model Only use local knowledge and the size of the graph Access to a global primitive RandomVertex() that returns a uniform node of the vertex set RandomVertex() : RV for short Costly primitive Cost of an update algorithm = expected number of calls to RV Romaric Duvignau Local Update Algorithms for Random Graphs 3 / 11

  10. Our decentralized and cost model Decentralized model Only use local knowledge and the size of the graph Access to a global primitive RandomVertex() that returns a uniform node of the vertex set RandomVertex() : RV for short Costly primitive Cost of an update algorithm = expected number of calls to RV Our algorithms Minimize the symmetric difference between the input G and the output G ′ Constant expected time Romaric Duvignau Local Update Algorithms for Random Graphs 3 / 11

  11. Our results (best algorithms) Optimal local update algorithms: Deletion algorithm o (1) calls to RV Insertion algorithm k calls to RV Romaric Duvignau Local Update Algorithms for Random Graphs 4 / 11

  12. Overview Introduction Update Algorithms Deletion Algorithms Insertion Algorithms Conclusion Romaric Duvignau Local Update Algorithms for Random Graphs 4 / 11

  13. Deletion Algorithm: Simple Algorithm Deletion of vertex 2 2 1 0 5 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

  14. Deletion Algorithm: Simple Algorithm Deletion of vertex 2 2 1 0 5 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

  15. Deletion Algorithm: Simple Algorithm Deletion of vertex 2 2 1 0 5 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

  16. Deletion Algorithm: Simple Algorithm Deletion of vertex 2 2 1 0 5 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

  17. Deletion Algorithm: Simple Algorithm Deletion of vertex 2 RV 2 1 RV 0 5 RV 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

  18. Deletion Algorithm: Simple Algorithm Deletion of vertex 2 RV 2 1 RV 0 5 RV 4 3 The simple solution Randomly redirect loose edges, RVA RVA u avoiding incompatible choices Asymptotic cost k Romaric Duvignau Local Update Algorithms for Random Graphs 5 / 11

  19. Deletion Algorithm: A better algorithm ? Deletion of vertex 2 2 1 0 5 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

  20. Deletion Algorithm: A better algorithm ? Deletion of vertex 2 2 1 0 5 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

  21. Deletion Algorithm: A better algorithm ? Deletion of vertex 2 Try 0 Try 1 2 1 0 5 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

  22. Deletion Algorithm: A better algorithm ? Deletion of vertex 2 2 1 0 5 RV 4 3 Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

  23. Deletion Algorithm: A better algorithm ? Deletion of vertex 2 2 1 0 5 RV 4 3 Suggestions must be independent, and can be made so Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

  24. Deletion Algorithm: A better algorithm ? Deletion of vertex 2 2 1 0 5 RV 4 3 Suggestions must be independent, and can be made so Second algorithm Use N + ( u ) to save calls to RV , while preserving independence between suggestions � � e − k · k k � k Asymptotic Cost: k · ≃ k ! 2 π Romaric Duvignau Local Update Algorithms for Random Graphs 6 / 11

  25. Deletion Algorithm: what about re-using N − ( u ) ? Best Algorithm: the typical case P 4 P 3 S 3 u S 2 P 2 S 1 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 7 / 11

  26. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 u P i P i − 1 P i − 2 . . . P 2 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

  27. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 u P i P i − 1 P i − 2 . . . P 2 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

  28. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 u P i P i − 1 P i − 2 . . . P 2 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

  29. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 u P i P i − 1 1 n − 1 − k P i − 2 . . . P 2 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

  30. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 u P i P i +1 P i − 1 1 n − 1 − k P i − 2 u P i . . P i +1 �∈ N + . G ( P i ) P 2 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

  31. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 u P i P i +1 P i − 1 1 n − 1 − k P i − 2 u P i . . P i +1 �∈ N + . G ( P i ) P 2 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

  32. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 u P i P i +1 P i +1 P i − 1 1 n − 1 − k P i − 2 u u P i P i . . P i +1 �∈ N + P i +1 �∈ N + . G ( P i ) G ( P i ) P 2 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

  33. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 u P i P i +1 P i +1 P i − 1 RVA 1 n − 1 − k P i − 2 u u P i P i . . P i +1 �∈ N + P i +1 ∈ N + . G ( P i ) G ( P i ) P 2 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

  34. Deletion Algorithm: how to redirect loose edges ? L = | N − G ( u ) | and 1 ≤ i ≤ L − 1 P 2 P i − 1 P i +1 P i +1 u P i RVA P i − 1 1 u u P i P i n − 1 − k P i − 2 P i +1 �∈ N + P i +1 ∈ N + G ( P i ) G ( P i ) . . . S 3 P 2 P L u S 2 S 1 P 1 Romaric Duvignau Local Update Algorithms for Random Graphs 8 / 11

Recommend


More recommend