liquid cooling
play

Liquid Cooling 1 Cold Plate for Super Computer Calculation - PowerPoint PPT Presentation

Liquid Cooling 1 Cold Plate for Super Computer Calculation Speed:12 x 10 12 times /sec. SB:12 boards Cold Plate IOSB : 6 boards Thermal Resistance R=dT/Q=(Tbase-Twi)/Q 0.06 Thermal Resistance (C/W) specification :<0.05C/W 0.05 0.04


  1. Liquid Cooling 1

  2. Cold Plate for Super Computer Calculation Speed:12 x 10 12 times /sec. SB:12 boards Cold Plate IOSB : 6 boards Thermal Resistance R=dT/Q=(Tbase-Twi)/Q 0.06 Thermal Resistance (C/W) specification :<0.05C/W 0.05 0.04 SB:12 boards Measured data 0.03 0.02 0.01 0 Super computer 20 40 60 80 100 120 CPU 20kW/Rack x 848 racks Heat Input Q (W) 17MW/ a machine 2

  3. Liquid Cooling Cold Plate Brazed Sample Inspection by Brazed Cold Plate Ultrasonic Microscope (Cross Section) 3

  4. Cold Plate Assembly Cold Plate (8 pcs) Coupler Coupler Manifold Φ 6.35 tube 4

  5. Cold Plate assembly on the Motherboard For super computer 80W(60-100W) x 8 CPUs/Board Φ6.35mm Copper Tube One tough Coupler to tube Manifold Total 32 memory on the board 5

  6. Cold Plate and Heat Pipe Cooler for a Super Computer Heat Pipe Heat Spreader for DIMM Hub Cold Plate Qcm Cold Plate 6

  7. DIMM (Dual Inline Memory Module) Cooling Cooling method of DIMM : Liquid cooling + Heat spreader Cold Rail Cold Rail Heat spreader Plate(DMS1) with Heat pipe 7

  8. Mini Channel Cold Plate Assemblies: Different Types 8

  9. Modular Refrigerator 9

  10. Fujikura MRU Development Prototype # 1 (Proof of Design) Prototype # 2 (Compact and high performance) Compressor Condenser + Blower Expansion Evaporator/ Valve Heater Can fit into 19 inch rack 10

  11. Fujikura Modular Refrigeration Unit Condenser To Evaporator Cover Compressor Cold Plate (Evaporator) Cover On  Total cooling solution designed & development by Fujikura Group using in-house technology  Evaporator made by FETL with advanced cold Plate manufacturing technology.  Heat pipe application inside MRU unit to improve COP.  SUS flexible tube piping made by Fujikura-Numazu.  Assembled & inspected by Fujikura Compo Sakura with high reliability. Cover Off  Target system price: ~ 5000 USD 11

  12. Temperature, ° C 10 10 20 20 30 30 40 40 50 50 60 60 0 0 0:00:00 0:00:00 0:00:35 0:00:35 Heater ON Heater ON 0:01:10 0:01:10 Refrigerator ON Refrigerator ON 0:01:45 0:01:45 0:02:20 0:02:20 0:02:55 0:02:55 0:03:30 0:03:30 0:04:05 0:04:05 Fujikura MRU: Test Results 0:04:40 0:04:40 0:05:15 0:05:15 0:05:50 0:05:50 0:06:25 0:06:25 0:07:00 0:07:00 0:07:35 0:07:35 0:08:10 0:08:10 Time, mm:ss 0:08:45 0:08:45 0:09:20 0:09:20 0:09:55 0:09:55 0:10:30 0:10:30 0:11:05 0:11:05 0:11:40 0:11:40 0:12:15 0:12:15 0:12:50 0:12:50 0:13:25 0:13:25 0:14:00 0:14:00  Heater Input 1.8 kW  Evaporator temperature 0:14:35 0:14:35 – 26 ° C controlled at around 25 0:15:10 0:15:10 0:15:45 0:15:45 0:16:20 0:16:20 Evaporator Evaporator 0:16:55 0:16:55 0:17:30 0:17:30 Evaporator-Outlet Evaporator-Outlet Evaporator-Inlet Evaporator-Inlet 0:18:05 0:18:05 0:18:40 0:18:40 0:19:15 0:19:15 0:19:50 0:19:50 12

  13. Technology comparison: Evaporator Heat Transfer Coefficient  Highly developed Evaporative heat transfer coefficient range for each  evaporator Two technology is dependent on:  Two phase passive cooling dimensional  Evaporator design & thickness  heat flow High heat flux and long Evaporative Heat Transfer Coefficient   Operation orientation distance capability Two phase 50 k  passive cooling Heat flux  Heat spreading  Heat transfer length device  One dimensional heat flow 40 k  Two phase passive cooling  Single phase cooling  Pumped circulation 30 k 20 – 50 k 20 k 15 – 35 k 10 – 20 k 8 – 15 k 10 k 5 – 10 k Liquid Pumped Cylindrical Heat Vapour Thin Heat Pipes Loop Heat Cooling Pipes Chambers Pipes Thermal Control Technology 13

  14. Heat Spreader 14

  15. Heat Spreader of Chips A heat spreader is important part to be spreading heat and guard for silicon chips. Cold forged Electro Ni plating Gold plating CPU Package IHS with Ni plating and gold plating Stiffener 15

  16. Micro-channel Vapor chamber Thermal Resistance of Micro Channel Vapor Chamber Micro skiving fin is available 0.1mm fin gap and 0.1 mm fin thickness. 16

  17. Piezo Fan 17

  18. Piezo Fan (Dual Cool Jet): Heat Dissipating Element Thin, Robust, Simple Structure 18

  19. Features of DCJ Ultra thin DCJ Thin D DC fan for note-PC PC ◎ Miniaturization of fan bearing has ◎ 1mm thickness is possible. limitation on the size due to reliability. 3mm thick is required at this moment. ◎ Low acoustic noise (<35dBA). ◎ High rotation speed is needed when ◎ Low power consumption (<350mW). reducing the thickness, and it becomes a ◎ Simple structure. high noise and high power consumption. ◎ Failure is caused from dust. 19

  20. Sample of DCJ (40SQ) Size (main body: W x L x T) 40x40x1 [mm] P-Q Performance(40SQ-25D-1T) Size with frame (Wo x Lo) 60x50 [mm] 8.0 Input Voltage DC 5 [V] 7.0 Driving Voltage* AC 25 [Vrms] [Pa] 6.0 155 ± 2[Hz] Driving Frequency* Static pressure� 5.0 4.0 Max. Air Flow Rate* 15 [LPM] 3.0 Max. Static Pressure* 6 [Pa] 2.0 1.0 0.0 Fan Off 0 5 10 15 20 Air flow� [L/min] Fan On 20

  21. Reference DCJ Testing Data for 5W Cooling DCJ running at 125 HZ and 35 Vrms ※ 100 Heater Temperature ( ºC) 90 80 70 60 50 DCJ on 40 DCJ off 30 20 10 0 0 1 2 3 4 5 6 Power Input (W) With DCJ cooling, CPU power can be increased up to 5 W ※ Tested only one DCJ without any other thermal cooling parts 21

  22. 4: EXPERIMENTAL STUDY _ Fabricated Module Specification Heat Pipe : L 175.0mm W 8.5mm T 1.5mm Module Weight : 20gmm (Including Fan) Maximum Height : 4.5mm Total Resistance Temperature Profile Th Target Line Qmax 18W Current module Qmax is 18W 電子電装事業部門 開発発表会 , 27 th December ,2012 22

  23. Direct Methanol Fuel Cell (DMFC) 23

  24. Energy Density of Selected Fuels Volumetric Energy Specific Energy Energy Sources Density Density (Watt*hours/Liter) (Watt*hours/kg) Li-ion Batteries 450 200 Hydrogen + Container 520 248 Compr (2000 psi) Hydrogen/Metal Hydride 600 236 Methanol* 4,817 6,098 Formic Acid 2,050 1,724 *Methanol has the highest energy density. 24

  25. Technical highlight - Passive water balance operation e - Water MeOH H 2 O Air O 2 (1) Methanol permeable membrane Methanol (2) DMFC MEA CO 2 vent (3) Air and water management layer (1) (2) (3) Water Balance Operation: • Water is produced at the cathode. • About 1/3 generated water is reused at anode for electrochemical reaction. • About 2/3 generated water is released from the system. 25

  26. Direct Methanol Fuel Cell (DMFC) DMFC is investigated based on our thermal and liquid feeding technology. Strong point - Unique fuel delivering system - Pocket size - High energy conversion efficiency using exhaust heat (1kW type) 2W output prototype 1kW output prototype Output power [W] 2 1,000 Size [mm] 135 x 75 x 23 400 x 500 x 150 Supplying water - 50 temperature [ o C] Applications Portable electronics device Aviation, Passenger ship, (Smart phone, mobile PC) etc. 26

  27. 2W DMFC DC-DC converter Fuel tank Stack Internal structure Package 1.Sequencing fuel bottle to charge fuel into the DMFC stack 2.Connecting DMFC to the portable electronic device. 3.DMFC will automatically start to charge the electronic device. 1. H × L × t : 75 × 140 × 38 mm 2. Weight without fuel : 230g (With fuel : 260g) 3. Power output : 4-5W·h for 1 fuel pushing. 4. Working time: up to 8 hours (Automatically stop) 5. Orientation independent 6. Working temperature : 10 – 35 o C (0 -40 o C in future). 7. Ambient relative humidity : 10 – 100% 27

  28. Performance & Durability of passive DMFC system 1. 2 C #1 C #120 25 o C and 50%RH 1. 0 P ow er output (W ) 0. 8 0. 6 0. 4 0. 2 0 60 120 180 240 300 360 T i m e (m i ns) • Working time: 6 hours with one fuel charging. • Total power output: C#1 (4.60W·h); C#120(4.55W·h). • Fuel utilization: 1.4 W·h/g of fuel. • We tested this DMFC charger in last 6 months for total 120 operation cycles. 28

  29. 1KW DMFC 300mm 400mm 600 mm Overall Dimensions: 600mm (W) x 400mm (D) x 330mm (H) 29

  30. 1KW DMFC Air blower Methanol sensor Liquid pump Heat exchanger Liquid pump stack Methanol solution tank Water tank 30

  31. Performance of large active area single cell (180cm 2 ) Power output, 75C, 1.75% MeOH at 0.4ml/A, dry air 8.00E-01 1.80E+01 Power (W) 1.60E+01 7.00E-01 1.40E+01 6.00E-01 1.20E+01 Voltage (V) 5.00E-01 1.00E+01 E_Stack[V]-0710 4.00E-01 8.00E+00 E_Stack[V]-0625 6.00E+00 3.00E-01 Power[W]-0710 4.00E+00 Power[W]-0625 2.00E-01 2.00E+00 1.00E-01 0.00E+00 0.00E+00 -2.00E+00 0.00E+001.00E+012.00E+013.00E+014.00E+015.00E+016.00E+017.00E+01 Current (A) • The peak power output is 16.5W. • Assume 61 cells in one stack, the stack power output is 1,000W. • In order to increase the stack power output to 1,200W, 20% up of performance is needed. • Our target is to increase single cell power output 20 to 25W. 31

  32. Energy balance diagram of 1.0 kW DMFC 4.0 kW of heat 5.3 kW of methanol 1.0 kW of net 1.3 kW of total electrical power electrical power 150 W for the other 150 W for active components air blower 32

  33. Thanks 33

Recommend


More recommend