linkage and tor algebra classes of grade three perfect
play

Linkage and Tor Algebra Classes of Grade Three Perfect Ideals Oana - PowerPoint PPT Presentation

Linkage and Tor Algebra Classes of Grade Three Perfect Ideals Oana Veliche Northeastern University, Boston Joint work with Lars W. Christensen, Jerzy Weyman Free Resolutions and Representation Theory ICERM, Brown University, Providence, RI


  1. Linkage and Tor Algebra Classes of Grade Three Perfect Ideals Oana Veliche Northeastern University, Boston Joint work with Lars W. Christensen, Jerzy Weyman Free Resolutions and Representation Theory ICERM, Brown University, Providence, RI Virtual Presentation August 3, 2020

  2. The talk is based on the following papers [1] Linkage classes of grade 3 perfect ideals , L.W. Christensen, O. Veliche, J.Weyman, Journal Pure and Applied Algebra, 224 (2020), no. 6, 106185, 29pp. [2] Free resolutions of Dynkin format and the licci property of grade 3 perfect ideals , L.W. Christensen, O. Veliche, J. Weyman, Mathematica Scandinavica, 125 (2019), no. 2, 163 – 178.

  3. Perfect Ideals of Grade 3 Let ( Q , n , k ) be a local ring and I a grade 3 perfect ideal of Q . A minimal free resolution of Q / I over Q has the form Q ← Q m ← Q m + n − 1 ← Q n ← 0 . We say that I has the resolution format: f I = ( 1 , m , m + n − 1 , n ) . m is the number of minimal generators of the ideal I . n is the type of Q / I , i.e. the rank of the socle 0 : Q / I ( n / I ) .

  4. Perfect Ideals of Grade 3 Let ( Q , n , k ) be a local ring and I a grade 3 perfect ideal of Q . A minimal free resolution of Q / I over Q has the form Q ← Q m ← Q m + n − 1 ← Q n ← 0 . We say that I has the resolution format: f I = ( 1 , m , m + n − 1 , n ) . m is the number of minimal generators of the ideal I . n is the type of Q / I , i.e. the rank of the socle 0 : Q / I ( n / I ) .

  5. Tor Algebra Let ( Q , n , k ) be a local ring and I a grade 3 perfect ideal of Q , and let Q / I ← F • be a minimal free resolution of Q / I over Q . Theorem. (Buchsbaum, Eisenbud, 1977) The resolution F • admits a differential graded algebra structure. This induces a graded commutative algebra structure on A • = H • ( F • ⊗ Q k ) = Tor Q • ( Q / I , k ) . If I has the format f I = ( 1 , m , m + n − 1 , n ) , then A • = k ⊕ A 1 ⊕ A 2 ⊕ A 3 , with rank k A 1 = m e 1 , e 2 , . . . , e m rank k A 2 = m + n − 1 f 1 , f 2 , . . . , f m + n − 1 and bases rank k A 3 = n g 1 , g 2 , . . . , g n .

  6. Tor Algebra Let ( Q , n , k ) be a local ring and I a grade 3 perfect ideal of Q , and let Q / I ← F • be a minimal free resolution of Q / I over Q . Theorem. (Buchsbaum, Eisenbud, 1977) The resolution F • admits a differential graded algebra structure. This induces a graded commutative algebra structure on A • = H • ( F • ⊗ Q k ) = Tor Q • ( Q / I , k ) . If I has the format f I = ( 1 , m , m + n − 1 , n ) , then A • = k ⊕ A 1 ⊕ A 2 ⊕ A 3 , with rank k A 1 = m e 1 , e 2 , . . . , e m rank k A 2 = m + n − 1 f 1 , f 2 , . . . , f m + n − 1 and bases rank k A 3 = n g 1 , g 2 , . . . , g n .

  7. Tor Algebra Let ( Q , n , k ) be a local ring and I a grade 3 perfect ideal of Q , and let Q / I ← F • be a minimal free resolution of Q / I over Q . Theorem. (Buchsbaum, Eisenbud, 1977) The resolution F • admits a differential graded algebra structure. This induces a graded commutative algebra structure on A • = H • ( F • ⊗ Q k ) = Tor Q • ( Q / I , k ) . If I has the format f I = ( 1 , m , m + n − 1 , n ) , then A • = k ⊕ A 1 ⊕ A 2 ⊕ A 3 , with rank k A 1 = m e 1 , e 2 , . . . , e m rank k A 2 = m + n − 1 f 1 , f 2 , . . . , f m + n − 1 and bases rank k A 3 = n g 1 , g 2 , . . . , g n .

  8. Tor Algebra Let ( Q , n , k ) be a local ring and I a grade 3 perfect ideal of Q , and let Q / I ← F • be a minimal free resolution of Q / I over Q . Theorem. (Buchsbaum, Eisenbud, 1977) The resolution F • admits a differential graded algebra structure. This induces a graded commutative algebra structure on A • = H • ( F • ⊗ Q k ) = Tor Q • ( Q / I , k ) . If I has the format f I = ( 1 , m , m + n − 1 , n ) , then A • = k ⊕ A 1 ⊕ A 2 ⊕ A 3 , with rank k A 1 = m e 1 , e 2 , . . . , e m rank k A 2 = m + n − 1 f 1 , f 2 , . . . , f m + n − 1 and bases rank k A 3 = n g 1 , g 2 , . . . , g n .

  9. Classification Theorem Theorem. (Weyman, 1989; Avramov, Kustin, Miller, 1988) There exist bases { e i } i = 1 ,..., m for A 1 , { f j } j = 1 ,..., m + n − 1 for A 2 , and { g ℓ } ℓ = 1 ,..., n for A 3 such that the non-zero products of the graded commutative algebra A • are in one of following five classes: A 1 · A 1 e 1 e 2 e 3 A 1 · A 2 f 1 f 2 f 3 e 1 0 f 3 − f 2 e 1 g 1 0 0 C ( 3 ): e 2 − f 3 0 f 1 e 2 0 g 1 0 e 3 f 2 − f 1 0 e 3 0 0 g 1 A 1 · A 1 e 1 e 2 e 3 e 1 0 f 3 − f 2 T : e 2 − f 3 0 f 1 e 3 f 2 − f 1 0 A 1 · A 1 e 1 e 2 A 1 · A 2 f 1 f 2 B : e 1 0 f 3 e 1 g 1 0 e 2 − f 3 0 e 2 0 g 1

  10. Classification Theorem, Continued A 1 · A 2 . . . f 1 f 2 f r e 1 g 1 0 . . . 0 G ( r ): e 2 0 g 1 . . . 0 r ≥ 2 . . . . ... . . . . . . . . e r 0 0 . . . g 1 H ( p , q ): A 1 · A 1 e 1 . . . e p A 1 · A 2 f p + 1 . . . f p + q p ≥ 0 e p + 1 f 1 . . . f p e p + 1 g 1 . . . g q q ≥ 0

  11. Multiplication Invariants p = rank k A 1 · A 1 q = rank k A 1 · A 2 r = rank k ( δ A 2 : A 2 → Hom k ( A 1 , A 3 )) f �→ ( e �→ f · e ) Class of I p q r C ( 3 ) 3 1 3 T 3 0 0 B 1 1 2 G ( r ) , r ≥ 2 0 1 r H ( p , q ) p q q

  12. Multiplication Invariants p = rank k A 1 · A 1 q = rank k A 1 · A 2 r = rank k ( δ A 2 : A 2 → Hom k ( A 1 , A 3 )) f �→ ( e �→ f · e ) Class of I p q r C ( 3 ) 3 1 3 T 3 0 0 B 1 1 2 G ( r ) , r ≥ 2 0 1 r H ( p , q ) p q q

  13. A 1 · A 1 e 1 e 2 e 3 A 1 · A 2 f 1 f 2 f 3 e 1 0 f 3 − f 2 e 1 g 1 0 0 C ( 3 ): e 2 − f 3 0 f 1 e 2 0 g 1 0 e 3 f 2 − f 1 0 e 3 0 0 g 1 p = 3 , q = 1 , r = 3 A 1 · A 1 e 1 e 2 e 3 e 1 0 f 3 − f 2 T : A 1 · A 2 = 0 e 2 − f 3 0 f 1 e 3 f 2 − f 1 0 p = 3 , q = 0 , r = 0

  14. A 1 · A 1 e 1 e 2 A 1 · A 2 f 1 f 2 B : e 1 0 f 3 e 1 g 1 0 e 2 − f 3 0 e 2 0 g 1 p = 1 , q = 1 , r = 2 A 1 · A 2 f 1 f 2 . . . f r e 1 g 1 0 . . . 0 G ( r ): e 2 0 g 1 . . . 0 A 1 · A 1 = 0 r ≥ 2 . . . . ... . . . . . . . . e r 0 0 . . . g 1 p = 0 , q = 0 , r = r

  15. H ( 0 , 0 ): A 1 · A 1 = 0 A 1 · A 2 = 0 p = 0 , q = 0 , r = 0 H ( p , q ): A 1 · A 1 e 1 . . . e p A 1 · A 2 f p + 1 . . . f p + q p + q ≥ 1 e p + 1 f 1 . . . f p e p + 1 g 1 . . . g q p = p , q = q , r = q

  16. Poincaré Series of the Residue Field Theorem. (Avramov, 2012) If ( Q , n , k ) is a regular local ring and I ⊆ n 2 is a grade 3 perfect ideal, then the Poincaré series of the ring Q / I defined by P Q / I i ( k , k ) t i is given by i = 1 rank k Tor Q ( t ) = � ∞ k ( 1 + t ) edim Q − 1 P Q / I ( t ) = 1 − t − ( m − 1 ) t 2 − ( n − p ) t 3 + qt 4 − τ t 5 , k where � 1 , if I is of class C ( 3 ) or T τ = 0 , if I is of class B , G ( r ) , or H ( p , q ) . Proposition. (Nguyen, − , 2020) If ( Q , n , k ) is a regular local ring and I ⊆ n 2 is a grade 3, then τ = rank k Coker ψ, where ψ : A 1 ⊗ A 1 ⊗ A 1 → ( A 1 · A 1 ) ⊗ A 1 ⊕ A 1 ⊗ ( A 1 · A 1 ) is given by ψ ( g ⊗ g ′ ⊗ g ′′ ) = ( gg ′ ⊗ g ′′ , g ⊗ g ′ g ′′ ) , for all g , g ′ , g ′′ ∈ A 1 .

  17. Poincaré Series of the Residue Field Theorem. (Avramov, 2012) If ( Q , n , k ) is a regular local ring and I ⊆ n 2 is a grade 3 perfect ideal, then the Poincaré series of the ring Q / I defined by P Q / I i ( k , k ) t i is given by i = 1 rank k Tor Q ( t ) = � ∞ k ( 1 + t ) edim Q − 1 P Q / I ( t ) = 1 − t − ( m − 1 ) t 2 − ( n − p ) t 3 + qt 4 − τ t 5 , k where � 1 , if I is of class C ( 3 ) or T τ = 0 , if I is of class B , G ( r ) , or H ( p , q ) . Proposition. (Nguyen, − , 2020) If ( Q , n , k ) is a regular local ring and I ⊆ n 2 is a grade 3, then τ = rank k Coker ψ, where ψ : A 1 ⊗ A 1 ⊗ A 1 → ( A 1 · A 1 ) ⊗ A 1 ⊕ A 1 ⊗ ( A 1 · A 1 ) is given by ψ ( g ⊗ g ′ ⊗ g ′′ ) = ( gg ′ ⊗ g ′′ , g ⊗ g ′ g ′′ ) , for all g , g ′ , g ′′ ∈ A 1 .

  18. Realizability Question (Avramov, 2012) Which quintuples ( m , n , p , q , r ) , allowed by the Classification Theorem, are realized by a local ring Q and a perfect ideal I of grade 3? In particular, which series ( 1 + t ) e − 1 1 − t − ( m − 1 ) t 2 − ( n − p ) t 3 + qt 4 − τ t 5 is the Poincaré series P Q / I ( t ) of a regular local ring Q of embedding dimension k e and a grade 3 perfect ideal I ?

  19. Realizability Question (Avramov, 2012) Which quintuples ( m , n , p , q , r ) , allowed by the Classification Theorem, are realized by a local ring Q and a perfect ideal I of grade 3? In particular, which series ( 1 + t ) e − 1 1 − t − ( m − 1 ) t 2 − ( n − p ) t 3 + qt 4 − τ t 5 is the Poincaré series P Q / I ( t ) of a regular local ring Q of embedding dimension k e and a grade 3 perfect ideal I ?

  20. Linkage Let Q be any local ring and I be a grade 3 perfect ideal. An ideal J ⊆ Q is said to be directly linked to I if there exists a grade 3 complete intersection ideal x such that x ⊆ I and J = x : I . Theorem. (Golod, 1980) The ideal J is then also a grade 3 perfect ideal with x ⊆ J and I = x : J . An ideal J is said to be linked to I if there exists a sequence of ideals I = J 0 , J 1 , J 2 , . . . , J n = J such that J i + 1 is directly linked to J i for each i = 0 , . . . , n − 1. We write I ∼ J . The class of the ideal I under this equivalence relation “ ∼ ” is called the linkage class of I .

Recommend


More recommend