universal linkage and the uniqueness of edm completions
play

Universal Linkage and the Uniqueness of EDM Completions A.Y. - PowerPoint PPT Presentation

Universal Linkage and the Uniqueness of EDM Completions A.Y. Alfakih Dept of Math and Statistics University of Windsor DIMACS DGTA16, July 2016 Introduction Every configuration p = ( p 1 , . . . , p n ) in R n defines EDM D = ( d ij = || p i


  1. Universal Linkage and the Uniqueness of EDM Completions A.Y. Alfakih Dept of Math and Statistics University of Windsor DIMACS DGTA16, July 2016

  2. Introduction Every configuration p = ( p 1 , . . . , p n ) in R n defines EDM D = ( d ij = || p i − p j || 2 ). For example, 5 2 1 3 4 .

  3. Introduction Every configuration p = ( p 1 , . . . , p n ) in R n defines EDM D = ( d ij = || p i − p j || 2 ). For example,   0 1 4 2 2 5 1 0 1 1 1   2   D = 4 1 0 2 2   1 3   2 1 2 0 4   2 1 2 4 0 4 .

  4. Introduction Every configuration p = ( p 1 , . . . , p n ) in R n defines EDM D = ( d ij = || p i − p j || 2 ). For example,   0 1 4 2 2 5 1 0 1 1 1   2   D = 4 1 0 2 2   1 3   2 1 2 0 4   2 1 2 4 0 4 Suppose a subset E of the entries of D is given. Does E uniquely determine D ? .

  5. Introduction Every configuration p = ( p 1 , . . . , p n ) in R n defines EDM D = ( d ij = || p i − p j || 2 ). For example,   0 1 4 2 2 5 1 0 1 1 1   2   D = 4 1 0 2 2   1 3   2 1 2 0 4   2 1 2 4 0 4 Suppose a subset E of the entries of D is given. Does E uniquely determine D ?   0 1 4 2 1 0 1 1 1     D = 4 1 0 2 .     1 2 0   2 1 0 .

  6. Introduction Every configuration p = ( p 1 , . . . , p n ) in R n defines EDM D = ( d ij = || p i − p j || 2 ). For example,   0 1 4 2 2 5 1 0 1 1 1   2   D = 4 1 0 2 2   1 3   2 1 2 0 4   2 1 2 4 0 4 Suppose a subset E of the entries of D is given. Does E uniquely determine D ?   0 1 4 2 2 2 1 0 1 1 1   1 3   D = 4 1 0 2 2 .     2 1 2 0 0 5 4   2 1 2 0 0 .

  7. Introduction Every configuration p = ( p 1 , . . . , p n ) in R n defines EDM D = ( d ij = || p i − p j || 2 ). For example,   0 1 4 2 2 5 1 0 1 1 1   2   D = 4 1 0 2 2   1 3   2 1 2 0 4   2 1 2 4 0 4 Suppose a subset E of the entries of D is given. Does E uniquely determine D ?   0 1 4 2 2 1 0 1 1 1     D = 4 1 0 2 2 .     2 1 2 0 x   2 1 2 0 x for all 0 ≤ x ≤ 4.

  8. EDM Completions ◮ Given a symmetric partial matrix A and a graph G . Let a ij : { i , j } ∈ E ( G ) be specified, or fixed, and a ij : { i , j } �∈ E ( G ) be unspecified, or free.

  9. EDM Completions ◮ Given a symmetric partial matrix A and a graph G . Let a ij : { i , j } ∈ E ( G ) be specified, or fixed, and a ij : { i , j } �∈ E ( G ) be unspecified, or free. ◮ D is an EDM completion of A if D is an EDM and d ij = a ij for all { i , j } ∈ E ( G ).

  10. EDM Completions ◮ Given a symmetric partial matrix A and a graph G . Let a ij : { i , j } ∈ E ( G ) be specified, or fixed, and a ij : { i , j } �∈ E ( G ) be unspecified, or free. ◮ D is an EDM completion of A if D is an EDM and d ij = a ij for all { i , j } ∈ E ( G ). ◮ A free entry d ij is universally linked if d ij is constant in all EDM completions of A .

  11. EDM Completions ◮ Given a symmetric partial matrix A and a graph G . Let a ij : { i , j } ∈ E ( G ) be specified, or fixed, and a ij : { i , j } �∈ E ( G ) be unspecified, or free. ◮ D is an EDM completion of A if D is an EDM and d ij = a ij for all { i , j } ∈ E ( G ). ◮ A free entry d ij is universally linked if d ij is constant in all EDM completions of A . ◮ If all free entries d ij are universally linked, then D is the unique completion of A .

  12. EDM Completions ◮ Given a symmetric partial matrix A and a graph G . Let a ij : { i , j } ∈ E ( G ) be specified, or fixed, and a ij : { i , j } �∈ E ( G ) be unspecified, or free. ◮ D is an EDM completion of A if D is an EDM and d ij = a ij for all { i , j } ∈ E ( G ). ◮ A free entry d ij is universally linked if d ij is constant in all EDM completions of A . ◮ If all free entries d ij are universally linked, then D is the unique completion of A . ◮ The set { d ij =: { i , j } �∈ E ( G ) for all EDM completions D } is called Cayley configuration space (CCS) of A .

  13. EDM Completions ◮ Given a symmetric partial matrix A and a graph G . Let a ij : { i , j } ∈ E ( G ) be specified, or fixed, and a ij : { i , j } �∈ E ( G ) be unspecified, or free. ◮ D is an EDM completion of A if D is an EDM and d ij = a ij for all { i , j } ∈ E ( G ). ◮ A free entry d ij is universally linked if d ij is constant in all EDM completions of A . ◮ If all free entries d ij are universally linked, then D is the unique completion of A . ◮ The set { d ij =: { i , j } �∈ E ( G ) for all EDM completions D } is called Cayley configuration space (CCS) of A . ◮ CCS is a spectrahedron, i.e., intersection of psd cone with an affine space.

  14. Example   0 1 4 2 2 1 0 1 1 1     Consider D = 4 1 0 2 2 . Let the free elements of D be     2 1 2 0 4   2 1 2 4 0 { 1 , 4 } , { 3 , 5 } and { 4 , 5 } .

  15. Example   0 1 4 2 2 1 0 1 1 1     Consider D = 4 1 0 2 2 . Let the free elements of D be     2 1 2 0 4   2 1 2 4 0 { 1 , 4 } , { 3 , 5 } and { 4 , 5 } . ◮ The CCS of D is d 14 = 2, d 35 = 2 and 0 ≤ d 45 ≤ 4.

  16. Example   0 1 4 2 2 1 0 1 1 1     Consider D = 4 1 0 2 2 . Let the free elements of D be     2 1 2 0 4   2 1 2 4 0 { 1 , 4 } , { 3 , 5 } and { 4 , 5 } . ◮ The CCS of D is d 14 = 2, d 35 = 2 and 0 ≤ d 45 ≤ 4. ◮ Thus d 14 and d 35 are universally linked, while d 45 is not universally linked.

  17. Example   0 1 4 2 2 1 0 1 1 1     Consider D = 4 1 0 2 2 . Let the free elements of D be     2 1 2 0 4   2 1 2 4 0 { 1 , 4 } , { 3 , 5 } and { 4 , 5 } . ◮ The CCS of D is d 14 = 2, d 35 = 2 and 0 ≤ d 45 ≤ 4. ◮ Thus d 14 and d 35 are universally linked, while d 45 is not universally linked. ◮ The embedding dimension of EDM D = dim of affine span of its generating points.

  18. Example   0 1 4 2 2 1 0 1 1 1     Consider D = 4 1 0 2 2 . Let the free elements of D be     2 1 2 0 4   2 1 2 4 0 { 1 , 4 } , { 3 , 5 } and { 4 , 5 } . ◮ The CCS of D is d 14 = 2, d 35 = 2 and 0 ≤ d 45 ≤ 4. ◮ Thus d 14 and d 35 are universally linked, while d 45 is not universally linked. ◮ The embedding dimension of EDM D = dim of affine span of its generating points. ◮ emb dim of D for d 45 = 0 or 4 is 2, while it is 3 for 0 < d 45 < 4.

  19. Bar-and-Joint Frameworks   0 1 4 2 + y 14 2 5 1 0 1 1 1   2   D = 4 1 0 2 2 + y 35   1 3   2 + y 14 1 2 0 4 + y 45   2 1 2 + y 35 4 + y 45 0 4

  20. Bar-and-Joint Frameworks   0 1 4 2 + y 14 2 5 1 0 1 1 1   2   D = 4 1 0 2 2 + y 35   1 3   2 + y 14 1 2 0 4 + y 45   2 1 2 + y 35 4 + y 45 0 4 ◮ Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework ( G , p ).

  21. Bar-and-Joint Frameworks   0 1 4 2 + y 14 2 5 1 0 1 1 1   2   D = 4 1 0 2 2 + y 35   1 3   2 + y 14 1 2 0 4 + y 45   2 1 2 + y 35 4 + y 45 0 4 ◮ Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework ( G , p ). ◮ Note that this ( G , p ) folds across the { 1 , 3 } edge.

  22. Bar-and-Joint Frameworks   0 1 4 2 + y 14 2 5 1 0 1 1 1   2   D = 4 1 0 2 2 + y 35   1 3   2 + y 14 1 2 0 4 + y 45   2 1 2 + y 35 4 + y 45 0 4 ◮ Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework ( G , p ). ◮ Note that this ( G , p ) folds across the { 1 , 3 } edge. ◮ The CCS of D is y 14 = 0, y 35 = 0 and − 4 ≤ y 45 ≤ 0.

  23. Bar-and-Joint Frameworks   0 1 4 2 + y 14 2 5 1 0 1 1 1   2   D = 4 1 0 2 2 + y 35   1 3   2 + y 14 1 2 0 4 + y 45   2 1 2 + y 35 4 + y 45 0 4 ◮ Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework ( G , p ). ◮ Note that this ( G , p ) folds across the { 1 , 3 } edge. ◮ The CCS of D is y 14 = 0, y 35 = 0 and − 4 ≤ y 45 ≤ 0. ◮ { k , l } is universally linked iff its CCS is contained in the hyperplane y kl = 0 in R ¯ m , ¯ m = num. of missing edges of G .

  24. Universal Rigidity, Dimensional rigidity and Affine Motions ◮ Given framework ( G , p ), let H be the adjacency matrix of G .

  25. Universal Rigidity, Dimensional rigidity and Affine Motions ◮ Given framework ( G , p ), let H be the adjacency matrix of G . ◮ ( G , p ) is universally rigid if H ◦ D p = H ◦ D q implies that D p = D q . ( ◦ ) denotes Hadamard product.

Recommend


More recommend