linear in lower bounds in the local model
play

Linear-in- lower bounds in the LOCAL model Mika Gs, University of - PowerPoint PPT Presentation

Linear-in- lower bounds in the LOCAL model Mika Gs, University of Toronto Juho Hirvonen , Aalto University & HIIT Jukka Suomela, Aalto Univesity & HIIT PODC 16.7.2014 This work The first linear-in- lower bound for a


  1. Linear-in- Δ lower bounds in the LOCAL model Mika Göös, University of Toronto Juho Hirvonen , Aalto University & HIIT Jukka Suomela, Aalto Univesity & HIIT � PODC 16.7.2014

  2. This work The first linear-in- Δ lower bound for a natural graph problem in the LOCAL model Fractional maximal matching: - There is no o ( Δ )-algorithm, independent of n - There is an O ( Δ )-algorithm, independent of n ( Δ = maximum degree, n = number of vertices) 2

  3. Matching 0 0 0 1 1 0 Matching assigns weight 1 to matched edges and weight 0 to the rest 3

  4. Fractional matching 0.3 0.4 0.1 0.3 0.4 0.1 FM is a linear relaxation of matching: weights of the incident edges sum up to at most 1 4

  5. Maximal fractional matching 0.3 0.4 0.1 0.3 0.4 0.1 A node is saturated , if the sum of the weights of the incident edges is equal to one 5

  6. Maximal fractional matching 0.3 0.3 0.4 0.4 0.1 0.3 0.1 0.2 0.4 0.1 0.4 0.1 The fractional matching is maximal , if no two unsaturated nodes are adjacent 6

  7. Standard LOCAL model - Synchronous communication - No bandwidth restrictions - Running time = number of communication rounds - Both deterministic and randomized algorithms 7

  8. This work The first linear-in- Δ lower bound for a natural graph problem in the LOCAL model Fractional maximal matching: - There is no o ( Δ )-algorithm, independent of n - There is an O ( Δ )-algorithm, independent of n ( Δ = maximum degree, n = number of vertices) 8

  9. Prior work Coordination problems: - Maximal matching - Maximal independent set - ( Δ +1)-coloring Algorithms O ( Δ + log* n ) also O(polylog( n ) Lower bounds Ω (log* n ) and Ω (log Δ ) [Linial ’92] [Kuhn et al. ’05] 9

  10. Prior work Coordination problems: - Maximal matching - Maximal independent set - ( Δ +1)-coloring Algorithms O ( Δ + log* n ) also O(polylog( n ) Lower bounds Ω (log* n ) and Ω (log Δ ) [Linial ’92] [Kuhn et al. ’05] 10

  11. The Proof

  12. The Proof A short guide - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 12

  13. The Proof A short guide - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 13

  14. Edge coloring (EC) EC ↝ PO ↝ OI ↝ ID ↝ R 14

  15. Port-numbering and orientation (PO) 1 2 1 2 3 3 2 1 1 2 4 1 EC ↝ PO ↝ OI ↝ ID ↝ R 15

  16. Port-numbering and orientation (PO) EC ↝ PO ↝ OI ↝ ID ↝ R 16

  17. Unique Identifiers (ID) 1 18 19 71 8 EC ↝ PO ↝ OI ↝ ID ↝ R 17

  18. Order Invariant (OI) 1 18 2 15 ≈ 19 71 8 31 41 5 EC ↝ PO ↝ OI ↝ ID ↝ R 18

  19. The Proof A short guide - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 19

  20. Loopy graphs k =2 k =3 A graph is k-loopy , if it has at least k self-loops at each node EC ↝ PO ↝ OI ↝ ID ↝ R 20

  21. Loopy graphs Loopy graphs are a compact representation of simple graphs with lots of symmetry EC ↝ PO ↝ OI ↝ ID ↝ R 21

  22. Loopy graphs A loopy graph can be unfolded to get a simple graph EC ↝ PO ↝ OI ↝ ID ↝ R 22

  23. Loopy graphs A loopy graph can be unfolded to get a simple graph EC ↝ PO ↝ OI ↝ ID ↝ R 23

  24. Loopy graphs loopy graphs ≈ infinite trees EC ↝ PO ↝ OI ↝ ID ↝ R 24

  25. Loopy graphs Key observation: a maximal fractional matching must saturate all nodes of a loopy graph! EC ↝ PO ↝ OI ↝ ID ↝ R 25

  26. EC lower bound G H EC ↝ PO ↝ OI ↝ ID ↝ R 26

  27. EC lower bound GG GH HH EC ↝ PO ↝ OI ↝ ID ↝ R 27

  28. EC lower bound EC ↝ PO ↝ OI ↝ ID ↝ R 28

  29. The Proof A short guide to the proof - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 29

  30. EC ↝ PO

  31. EC ↝ PO Assume we have an o( Δ )-time algorithm A for maximal edge packing in the PO model EC ↝ PO ↝ OI ↝ ID ↝ R 31

  32. EC ↝ PO Transform EC graph into PO graph by replacing each edge with two oriented edges EC ↝ PO ↝ OI ↝ ID ↝ R 32

  33. EC ↝ PO 0.3 0.25 0.45 0.45 0.15 0.2 0.1 0 0.1 Simulate the PO-algorithm A and combine the weights of the corresponding edges EC ↝ PO ↝ OI ↝ ID ↝ R 33

  34. EC ↝ PO We get an o( Δ )-algorithm in the EC-model, which is a contradiction EC ↝ PO ↝ OI ↝ ID ↝ R 34

  35. PO ↝ OI

  36. PO ↝ OI - Similar technology as Göös et al. (2012) - Now we do not need any approximation guarantees EC ↝ PO ↝ OI ↝ ID ↝ R 36

  37. PO ↝ OI Assume we have a PO-algorithm A We use port numbers and orientation to get a local ordering EC ↝ PO ↝ OI ↝ ID ↝ R 37

  38. PO ↝ OI v v G U (G) Take the universal cover of G EC ↝ PO ↝ OI ↝ ID ↝ R 38

  39. Canonically 53 31 45 52 ordered tree 39 51 13 25 37 44 50 41 14 38 49 15 29 40 30 43 48 23 47 27 1 9 17 35 42 46 2 36 3 10 16 21 28 34 4 24 33 22 5 11 19 26 32 6 20 7 12 18 8 EC ↝ PO ↝ OI ↝ ID ↝ R

  40. 53 Embed U (G) 31 45 52 39 51 13 25 37 44 50 41 14 38 49 15 29 40 30 43 48 23 47 27 1 9 17 35 42 46 v 2 36 3 10 16 21 28 34 4 24 33 22 5 11 19 26 32 6 20 7 12 18 8 EC ↝ PO ↝ OI ↝ ID ↝ R

  41. PO ↝ OI It is possible to make a PO-graph an OI-graph locally Use this to simulate A EC ↝ PO ↝ OI ↝ ID ↝ R 41

  42. OI ↝ ID

  43. OI ↝ ID Use the OI ↝ ID lemma of Naor and Stockmeyer (1995) (essentially Ramsey’s Theorem) The idea is to force any ID-algorithm A to behave like an OI-algorithm on some inputs EC ↝ PO ↝ OI ↝ ID ↝ R 43

  44. OI ↝ ID Trick: consider an algorithm A* that simulates A and outputs 1 at saturated nodes and 0 elsewhere to apply the Lemma This forces all nodes to be saturated in A in loopy neighborhoods Any change must propagate outside A ’s run time EC ↝ PO ↝ OI ↝ ID ↝ R 44

  45. The Proof A short guide - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 45

  46. Randomized algorithms Idea: Reduce random algorithms back to deterministic ones Again use a lemma of Naor and Stockmeyer (1995) EC ↝ PO ↝ OI ↝ ID ↝ R 46

  47. Summary This work Fractional maximal matching has complexity Θ ( Δ ) Open questions What is the complexity of maximal matching ? What is the complexity of 2-colored maximal matching ? 47

Recommend


More recommend