Limit Your Consumption! Finding Bounds in Average-energy Games Joint work with Kim G. Larsen and Simon Laursen (Aalborg University) Martin Zimmermann Saarland University April, 3nd 2016 QAPL 16 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 1/14
Motivation Shift from programs to reactive systems: non-terminating interacting with a possibly antagonistic environment communication-intensive Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 2/14
Motivation Shift from programs to reactive systems: non-terminating interacting with a possibly antagonistic environment communication-intensive Successful approach to verification and synthesis: an infinite game between the system and its environment: two players infinite duration perfect information system player wins if specification is satisfied Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 2/14
Motivation Shift from programs to reactive systems: non-terminating interacting with a possibly antagonistic environment communication-intensive Successful approach to verification and synthesis: an infinite game between the system and its environment: two players infinite duration perfect information system player wins if specification is satisfied Here: graph-based games with quantitative winning conditions modeling consumption of a ressource Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 2/14
An Example v 2 v 0 v 1 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example v 2 v 0 v 1 A play: v 0 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example v 2 v 0 v 1 A play: v 0 v 2 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example v 2 v 0 v 1 A play: v 0 v 2 v 1 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example v 2 v 0 v 1 A play: v 0 v 2 v 1 v 0 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example v 2 v 0 v 1 A play: v 0 v 2 v 1 v 0 v 2 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example v 2 v 0 v 1 A play: v 0 v 2 v 1 v 0 v 2 v 0 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example v 2 v 0 v 1 A play: v 0 v 2 v 1 v 0 v 2 v 0 v 1 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example v 2 v 0 v 1 A play: · · · v 0 v 2 v 1 v 0 v 2 v 0 v 1 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A play (with energy levels): ( v 0 , 0) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A play (with energy levels): ( v 0 , 0) ( v 2 , 3) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A play (with energy levels): ( v 0 , 0) ( v 2 , 3) ( v 1 , 0) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A play (with energy levels): ( v 0 , 0) ( v 2 , 3) ( v 1 , 0) ( v 0 , 0) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A play (with energy levels): ( v 0 , 0) ( v 2 , 3) ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A play (with energy levels): ( v 0 , 0) ( v 2 , 3) ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) ( v 0 , 5) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A play (with energy levels): ( v 0 , 0) ( v 2 , 3) ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) ( v 0 , 5) ( v 1 , 4) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A play (with energy levels): ( v 0 , 0) ( v 2 , 3) ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) ( v 0 , 5) ( v 1 , 4) · · · Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A strategy: ( v 0 , 0) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A strategy: ( v 0 , 0) ( v 2 , 3) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A strategy: ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) ( v 0 , 5) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A strategy: ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) ( v 0 , 5) ( v 1 , 4) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A strategy: ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) ( v 0 , 5) ( v 1 , 4) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A strategy: ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) ( v 0 , 5) ( v 1 , 4) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A strategy: ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) Energy level always between 0 and 5 ( v 0 , 5) ( v 1 , 4) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
An Example 3 -1 v 2 2 -3 0 v 0 v 1 -1 A strategy: ( v 1 , 0) ( v 0 , 0) ( v 2 , 3) Energy level always between 0 and 5 ( v 0 , 5) ( v 1 , 4) Average energy level at most 4 Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 3/14
Previous Work objective Complexity Memory Requirements EG L NP ∩ co-NP memoryless EG LU ExpTime -complete pseudopolynomial Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 4/14
Previous Work objective Complexity Memory Requirements EG L NP ∩ co-NP memoryless EG LU ExpTime -complete pseudopolynomial AE NP ∩ co-NP memoryless AE LU ExpTime -complete pseudopolynomial Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 4/14
Previous Work objective Complexity Memory Requirements EG L NP ∩ co-NP memoryless EG LU ExpTime -complete pseudopolynomial AE NP ∩ co-NP memoryless AE LU ExpTime -complete pseudopolynomial AE LU ( U − L poly) NP ∩ co-NP polynomial Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 4/14
Previous Work objective Complexity Memory Requirements EG L NP ∩ co-NP memoryless EG LU ExpTime -complete pseudopolynomial AE NP ∩ co-NP memoryless AE LU ExpTime -complete pseudopolynomial AE LU ( U − L poly) NP ∩ co-NP polynomial AE L ExpTime -hard ≥ pseudopolynomial Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 4/14
Previous Work objective Complexity Memory Requirements EG L NP ∩ co-NP memoryless EG LU ExpTime -complete pseudopolynomial AE NP ∩ co-NP memoryless AE LU ExpTime -complete pseudopolynomial AE LU ( U − L poly) NP ∩ co-NP polynomial AE L ExpTime -hard ≥ pseudopolynomial W.l.o.g.: fix lower bound 0 In all problems, lower and upper bounds part of the input. Here: upper bound existentially quantified. Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 4/14
Objectives Capacity cap ∈ N , threshold t ∈ N EG L = { v 0 v 1 · · · | ∀ n . 0 ≤ EL ( v 0 · · · v n ) } EG LU ( cap ) = { v 0 v 1 · · · | ∀ n . 0 ≤ EL ( v 0 · · · v n ) ≤ cap } Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 5/14
Objectives Capacity cap ∈ N , threshold t ∈ N EG L = { v 0 v 1 · · · | ∀ n . 0 ≤ EL ( v 0 · · · v n ) } EG LU ( cap ) = { v 0 v 1 · · · | ∀ n . 0 ≤ EL ( v 0 · · · v n ) ≤ cap } � n − 1 1 AE( t ) = { v 0 v 1 · · · | lim sup i =0 EL ( v 0 · · · v i ) ≤ t } n n →∞ Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 5/14
Objectives Capacity cap ∈ N , threshold t ∈ N EG L = { v 0 v 1 · · · | ∀ n . 0 ≤ EL ( v 0 · · · v n ) } EG LU ( cap ) = { v 0 v 1 · · · | ∀ n . 0 ≤ EL ( v 0 · · · v n ) ≤ cap } � n − 1 1 AE( t ) = { v 0 v 1 · · · | lim sup i =0 EL ( v 0 · · · v i ) ≤ t } n n →∞ AE L ( t ) = EG L ∩ AE( t ) AE LU ( cap , t ) = EG LU ( cap ) ∩ AE( t ) Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 5/14
Finding Bounds in Average-energy Games Input : Weighted arena A Question : Exists a threshold t ∈ N s.t. Player 0 wins ( A , AE L ( t ))? Martin Zimmermann Saarland University Finding Bounds in Average-energy Games 6/14
Recommend
More recommend