average case lower bounds for threshold circuits
play

Average case lower bounds for threshold circuits Ruiwen Chen, Rahul - PowerPoint PPT Presentation

Average case lower bounds for threshold circuits Ruiwen Chen, Rahul Santhanam and Srikanth Srinivasan University of Oxford and Department of Mathematics, IIT Bombay CCC 2016 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 1 / 21


  1. Average case lower bounds for threshold circuits Ruiwen Chen, Rahul Santhanam and Srikanth Srinivasan University of Oxford and Department of Mathematics, IIT Bombay CCC 2016 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 1 / 21

  2. Boolean Circuits Circuit computing function f : { 0 , 1 } n → { 0 , 1 } . g 1 Computation proceeds through “simple” g 3 operations. g 2 x 1 x 2 x 3 x 4 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 2 / 21

  3. Boolean Circuits Circuit computing function f : { 0 , 1 } n → { 0 , 1 } . g 1 Computation proceeds through “simple” g 3 operations. g 2 g i ∈ “basic” operations. x 1 x 2 x 3 x 4 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 2 / 21

  4. Boolean Circuits Circuit computing function f : { 0 , 1 } n → { 0 , 1 } . g 1 Computation proceeds through “simple” g 3 operations. g 2 g i ∈ “basic” operations. Designated output gate x 1 x 2 x 3 x 4 computes function f . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 2 / 21

  5. Boolean Circuits Size s of the circuit: time g 1 taken by algorithm. g 3 g 2 depth = 3 x 1 x 2 x 3 x 4 # wires = 8 , # gates = 3 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 3 / 21

  6. Boolean Circuits Size s of the circuit: time g 1 taken by algorithm. Could be # edges/wires or # gates. g 3 g 2 depth = 3 x 1 x 2 x 3 x 4 # wires = 8 , # gates = 3 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 3 / 21

  7. Boolean Circuits Size s of the circuit: time g 1 taken by algorithm. Could be # edges/wires or # gates. g 3 # wires ≤ ( n + # gates) · g 2 depth = 3 # gates. x 1 x 2 x 3 x 4 # wires = 8 , # gates = 3 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 3 / 21

  8. Boolean Circuits Size s of the circuit: time g 1 taken by algorithm. Could be # edges/wires or # gates. g 3 # wires ≤ ( n + # gates) · g 2 depth = 3 # gates. Depth d of the circuit: parallelism of the x 1 x 2 x 3 x 4 algorithm. # wires = 8 , # gates = 3 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 3 / 21

  9. Boolean Circuits Size s of the circuit: time g 1 taken by algorithm. Could be # edges/wires or # gates. g 3 # wires ≤ ( n + # gates) · g 2 depth = 3 # gates. Depth d of the circuit: parallelism of the x 1 x 2 x 3 x 4 algorithm. # wires = 8 , # gates = 3 s = s ( n ) , d = O (1) . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 3 / 21

  10. Threshold circuits A threshold operation: g ( x ) = 1 iff � i w i x i ≥ θ for w i , θ ∈ R . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 4 / 21

  11. Threshold circuits A threshold operation: g ( x ) = 1 iff � i w i x i ≥ θ for w i , θ ∈ R . Some examples: OR function: OR( x ) = 1 iff � i x i ≥ 1 . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 4 / 21

  12. Threshold circuits A threshold operation: g ( x ) = 1 iff � i w i x i ≥ θ for w i , θ ∈ R . Some examples: OR function: OR( x ) = 1 iff � i x i ≥ 1 . AND function: AND( x ) = � � i x i ≥ n � . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 4 / 21

  13. Threshold circuits A threshold operation: g ( x ) = 1 iff � i w i x i ≥ θ for w i , θ ∈ R . Some examples: OR function: OR( x ) = 1 iff � i x i ≥ 1 . AND function: AND( x ) = � � i x i ≥ n � . MAJ function: MAJ( x ) = � � i x i ≥ n/ 2 � . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 4 / 21

  14. Threshold circuits A threshold operation: g ( x ) = 1 iff � i w i x i ≥ θ for w i , θ ∈ R . Some examples: OR function: OR( x ) = 1 iff � i x i ≥ 1 . AND function: AND( x ) = � � i x i ≥ n � . MAJ function: MAJ( x ) = � � i x i ≥ n/ 2 � . i 2 i ( x i − y i ) ≥ 0 � . GEQ function: GEQ( x, y ) = � � Average case bounds for TC 0 Chen, Santhanam, S. May 2016 4 / 21

  15. Threshold circuits A threshold operation: g ( x ) = 1 iff � i w i x i ≥ θ for w i , θ ∈ R . Some examples: OR function: OR( x ) = 1 iff � i x i ≥ 1 . AND function: AND( x ) = � � i x i ≥ n � . MAJ function: MAJ( x ) = � � i x i ≥ n/ 2 � . i 2 i ( x i − y i ) ≥ 0 � . GEQ function: GEQ( x, y ) = � � TC 0 g ( s, d ) : threshold circuits with s gates and depth d . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 4 / 21

  16. Threshold circuits A threshold operation: g ( x ) = 1 iff � i w i x i ≥ θ for w i , θ ∈ R . Some examples: OR function: OR( x ) = 1 iff � i x i ≥ 1 . AND function: AND( x ) = � � i x i ≥ n � . MAJ function: MAJ( x ) = � � i x i ≥ n/ 2 � . i 2 i ( x i − y i ) ≥ 0 � . GEQ function: GEQ( x, y ) = � � TC 0 g ( s, d ) : threshold circuits with s gates and depth d . TC 0 w ( s, d ) : threshold circuits with s wires and depth d . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 4 / 21

  17. Threshold circuits A threshold operation: g ( x ) = 1 iff � i w i x i ≥ θ for w i , θ ∈ R . Some examples: OR function: OR( x ) = 1 iff � i x i ≥ 1 . AND function: AND( x ) = � � i x i ≥ n � . MAJ function: MAJ( x ) = � � i x i ≥ n/ 2 � . i 2 i ( x i − y i ) ≥ 0 � . GEQ function: GEQ( x, y ) = � � TC 0 g ( s, d ) : threshold circuits with s gates and depth d . TC 0 w ( s, d ) : threshold circuits with s wires and depth d . Generalize AC 0 circuits made up of AND and OR gates. Average case bounds for TC 0 Chen, Santhanam, S. May 2016 4 / 21

  18. The power of threshold circuits f = PARITY( x 1 , . . . , x n ) = x 1 ⊕ x 2 ⊕ · · · ⊕ x n . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 5 / 21

  19. The power of threshold circuits f = PARITY( x 1 , . . . , x n ) = x 1 ⊕ x 2 ⊕ · · · ⊕ x n . d ≥ 2 : f ∈ TC 0 g ( dn 1 / ( d − 1) , d ) (Siu-Roychowdhury-Kailath 1991) Average case bounds for TC 0 Chen, Santhanam, S. May 2016 5 / 21

  20. The power of threshold circuits f = PARITY( x 1 , . . . , x n ) = x 1 ⊕ x 2 ⊕ · · · ⊕ x n . d ≥ 2 : f ∈ TC 0 g ( dn 1 / ( d − 1) , d ) (Siu-Roychowdhury-Kailath 1991) w ( n 1+ ε d , d ) (Beame-Brisson-Ladner, Paturi-Saks 1991) f ∈ TC 0 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 5 / 21

  21. The power of threshold circuits f = PARITY( x 1 , . . . , x n ) = x 1 ⊕ x 2 ⊕ · · · ⊕ x n . d ≥ 2 : f ∈ TC 0 g ( dn 1 / ( d − 1) , d ) (Siu-Roychowdhury-Kailath 1991) w ( n 1+ ε d , d ) (Beame-Brisson-Ladner, Paturi-Saks 1991) f ∈ TC 0 Compare with: PARITY does not have AC 0 circuits of subexponential size (H˚ astad 1986). Average case bounds for TC 0 Chen, Santhanam, S. May 2016 5 / 21

  22. Circuit lower bounds Problem: Find explicit family of functions (say in NP) that have no TC 0 circuits of poly ( n ) size. Average case bounds for TC 0 Chen, Santhanam, S. May 2016 6 / 21

  23. Circuit lower bounds Problem: Find explicit family of functions (say in NP) that have no TC 0 circuits of poly ( n ) size. Even open for depth 2 . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 6 / 21

  24. Work on threshold circuits Hajnal Maass Pudl´ ak Turan Szegedy 1987 (Polynomial Approximations) Paturi Saks 1991, Siu Roychowdhury Kailath 1992; Beigel 1994; Aspnes Beigel Furst Rudich 1994, Podolskii 2012 (Combinatorial restrictions) Impagliazzo Paturi Saks 1991 (Communication complexity) Goldmann Hastad Razborov 1992; Nisan 1992; Hansen Miltersen 2004; Chattopadhyay Hansen 2005; Lovett, S. 2012 (Analytic techniques) Gopalan Servedio 2010 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 7 / 21

  25. State-of-the-art lower bounds (Impagliazzo-Paturi-Saks 1991) PARITY not in TC 0 g ( n 1 / 2( d − 1) , d ) and w ( n 1+ ε d , d ) . TC 0 Average case bounds for TC 0 Chen, Santhanam, S. May 2016 8 / 21

  26. State-of-the-art lower bounds (Impagliazzo-Paturi-Saks 1991) PARITY not in TC 0 g ( n 1 / 2( d − 1) , d ) and w ( n 1+ ε d , d ) . TC 0 (Kane-Williams 2015) Explicit functions not in TC 0 g ( n 1 . 5 − o (1) , 2) and TC 0 w ( n 2 . 5 − o (1) , 2) . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 8 / 21

  27. State-of-the-art lower bounds (Impagliazzo-Paturi-Saks 1991) PARITY not in TC 0 g ( n 1 / 2( d − 1) , d ) and w ( n 1+ ε d , d ) . TC 0 (Kane-Williams 2015) Explicit functions not in TC 0 g ( n 1 . 5 − o (1) , 2) and TC 0 w ( n 2 . 5 − o (1) , 2) . Also extends to a special case of depth- 3 . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 8 / 21

  28. Average case lower bounds Want to show a function f : { 0 , 1 } n → { 0 , 1 } hard on average . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 9 / 21

  29. Average case lower bounds Want to show a function f : { 0 , 1 } n → { 0 , 1 } hard on average . Trivial to compute f on half the inputs. Average case bounds for TC 0 Chen, Santhanam, S. May 2016 9 / 21

  30. Average case lower bounds Want to show a function f : { 0 , 1 } n → { 0 , 1 } hard on average . Trivial to compute f on half the inputs. f has ε -correlation with ckt C if x [ C ( x ) = f ( x )] − 1 Corr( C, f ) := Pr 2 ≤ ε. Average case bounds for TC 0 Chen, Santhanam, S. May 2016 9 / 21

  31. Average case lower bounds Want to show a function f : { 0 , 1 } n → { 0 , 1 } hard on average . Trivial to compute f on half the inputs. f has ε -correlation with ckt C if x [ C ( x ) = f ( x )] − 1 Corr( C, f ) := Pr 2 ≤ ε. Want to show that f hard on average against TC 0 ( s, d ) . Average case bounds for TC 0 Chen, Santhanam, S. May 2016 9 / 21

Recommend


More recommend