lightweight circuits with shift and swap
play

Lightweight Circuits with Shift and Swap Subhadeep Banik Asian - PowerPoint PPT Presentation

Lightweight Circuits with Shift and Swap Subhadeep Banik Asian Symmetric Key Workshop, ISI Kolkata November 18, 2018 Introduction Types of Circuits: Brief background. Block cipher circuits: Round based vs Serial. Eg: Working example


  1. Lightweight Circuits with Shift and Swap Subhadeep Banik Asian Symmetric Key Workshop, ISI Kolkata November 18, 2018

  2. Introduction • Types of Circuits: Brief background. • Block cipher circuits: Round based vs Serial. ⇒ Eg: Working example with PRESENT • Relevance of lightweight circuits to current problem. • Results. 2 of 44

  3. bc bc Combinatorial vs Sequential • Combinatorial Circuits: • Behavior of the circuit is described completely by logic gates. • Eg: Multiplexer, AES S-box etc. A B ⊕ AB+CD C D Figure: Combinatorial Circuit 3 of 44

  4. bc bc bc bc Combinatorial vs Sequential • Sequential Circuits: • Behavior of the circuit is described over time. • Eg: Any circuit in which S t +1 = F ( S t ). Q In F S 0 Load Reg CLK 4 of 44 Figure: Combinatorial Circuit

  5. bc bc bc bc Combinatorial vs Sequential • Sequential Circuits: • Behavior of the circuit is described over time. • Eg: Any circuit in which S t +1 = F ( S t ). Q In F S 0 Load Reg CLK 1 0 CLK Load 0x1234 S 0 0x1234 0x2345 0x3456 In 0xXXXX 0x1234 0x2345 Q F ( Q ) 0xXXXX 0x2345 0x3456 5 of 44 Figure: Combinatorial Circuit

  6. bc bc bc bc b b b b Block Cipher Circuits • Repeated application of Round Fn: similar to previous circuit. • However can be implemented using both ideologies. • Eg: Fully unrolled AES. RF 1 RF 2 RF 3 RF 10 PT CT KS 1 KS 2 KS 3 KS 10 K 6 of 44 Figure: Combinatorial Circuit

  7. bc bc bc bc Block Cipher Circuits • Round Based Circuits. • One round Function Executed per clock cycle. • S 0 = PT || K || 0, F = RF || KS || ( i → i + 1). Q In F S 0 Load Reg CLK 7 of 44 Figure: Combinatorial Circuit

  8. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K XX XX XX XX XX S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) XX XX XX XX 8 of 44

  9. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K K 19 XX XX XX XX S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) XX XX XX XX 9 of 44

  10. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K K 18 K 19 XX XX XX S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) XX XX XX XX 10 of 44

  11. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K K 17 K 18 K 19 XX XX S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) XX XX XX XX 11 of 44

  12. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K K 16 K 17 K 18 K 19 XX S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) XX XX XX XX 12 of 44

  13. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K K 15 K 16 K 17 K 18 XX S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) P 15 XX XX XX 13 of 44

  14. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K K 0 K 1 K 2 K 3 K 19 S 0 ← PT Q 15 For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) P 0 P 1 P 2 P 15 14 of 44

  15. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K K 19 K 0 K 1 K 2 K 18 S 0 ← PT Q 14 For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) Q 15 P 0 P 1 P 14 15 of 44

  16. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • Serialized Circuit: One S-box (lightweight implementation). • Circuit by Rolfes et al. [CARDIS 08]. • Less than 1000 GE. K K 18 K 19 K 0 K 1 K 17 S 0 ← PT Q 13 For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) Q 14 Q 15 P 0 P 13 16 of 44

  17. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • After 20+16 cycles. • 1st round key addition and Substitution done. • Now to do the Permutation layer. K K 4 K 5 K 6 K 7 K 3 S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) Q 0 Q 1 Q 2 Q 15 17 of 44

  18. b b b b b b b b b b b b b b b b b b b b b bc bc bc bc b b b b b b b b b Block Cipher Circuits: PRESENT • 17th cycle dedicated to permutation layer. • Also prepare the next roundkey. • Each flip flop needs to be a scan flip-flop (144 in total). K L 19 K 4 K 5 K 6 K 7 K 3 S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) Q 0 Q 1 Q 2 Q 15 T 0 18 of 44

  19. bc bc bc bc b b b b b b b b Block Cipher Circuits: PRESENT • 1st Round now completely done. • Repeat the 17 cycles to do round 2. • Repeat 31 times. K L 0 L 1 L 2 L 3 L 19 S 0 ← PT For i = 1 → 31 do ⊕ S A . U i ← Sbox ( S i − 1 ⊕ K i − 1 ) PT B . S i ← P.Layer ( U i ) T 0 T 1 T 15 T 2 19 of 44

  20. b b b b b b b b b b b b bc bc bc bc b b b b Block Cipher Circuits: PRESENT • CHES 2017: Bit Sliding: (reducing datapath to 1 bit!!). • Use the fact that P = P 4 2 ◦ P 1 . • #Scan flip-flops: 35 (=24+11) → Area 850 GE. b 63 b 62 b 61 b 60 b 59 b 58 b 49 b 48 b 47 b 46 b 45 b 44 b 43 b 42 b 33 b 32 b 31 b 30 b 29 b 28 b 27 b 26 b 17 b 16 b 15 b 14 b 13 b 12 b 11 b 10 b 1 b 0 20 of 44

  21. b b b b Current problem Before us • More Scan flip-flops = More hardware area. • Can we reduce #Scan flip-flops to 2 ? • If so we reduce the number of implementable functions • Only Possible if P can be implemented efficiently. b 63 b 62 b 61 b 1 b 0 Sel Sel 21 of 44

  22. b b b b Current problem Before us • What functions can be implemented?. • If Sel=0, r = One bit rotate towards the left. • If Sel=1, ( b 63 , b 62 , . . . , b 1 , b 0 ) → ( b 63 , b 61 , . . . , b 0 , b 62 ) • The above function v = r ◦ w where w =SWAP( b 63 , b 62 ). b 63 b 62 b 61 b 1 b 0 Sel Sel 22 of 44

  23. b b b b Current problem Before us • Can P expressed as a composition of r , v ? • Answer is YES. • In fact r , w generate S 64 . • Delve into the theory of Permutation Groups. b 63 b 62 b 61 b 1 b 0 Sel Sel 23 of 44

  24. r , w = (63 , 62) Generate S 64 Proof • Set of all Swaps generates S 64 . • G = { (63 , 62) , (62 , 61) , (61 , 60) , . . . (1 , 0) } generates S 64 . ( i , j ) = ( i , i − 1) ◦ ( i − 1 , j ) ◦ ( i , i − 1) = ( i , i − 1) ◦ ( i − 1 , i − 2) ◦ ( i − 2 , j ) ◦ ( i − 1 , i − 2) ◦ ( i , i − 1) • Given the following identity π ◦ ( i 1 , i 2 , . . . , i k ) ◦ π − 1 = ( π ( i 1 ) , π ( i 2 ) , . . . , π ( i k )) , • Easy to see that r − (63 − i ) ◦ (63 , 62) ◦ r (63 − i ) = ( r − (63 − i ) (63) , r − (63 − i ) (62)) = ( i , i − 1) 24 of 44

  25. # Operations? Analysis • Consider (49 , 40). How many operations required ? (49 , 40) = (49 , 48) ◦ (48 , 40) ◦ (49 , 48) = (49 , 48) ◦ (48 , 47) ◦ (47 , 40) ◦ (48 , 47) ◦ (49 , 48) = (49 , 48) ◦ (48 , 47) ◦ · · · (42 , 41) ◦ (41 , 40) ◦ (42 , 41) · · · (48 , 47) ◦ (49 , 48) • (49 , 48) = r − 14 ◦ w ◦ r 14 , (48 , 47) = r − 15 ◦ w ◦ r 15 , . . . , (41 , 40) = r − 22 ◦ w ◦ r 22 • So we have (49 , 40) = r − 14 ◦ w ◦ [ r − 1 ◦ w ◦ · · · ◦ r − 1 ◦ w ] ◦ r 14 ◦ [ r ◦ w ◦ · · · ◦ r ◦ w ] � �� � � �� � 8 times 8 times = [ r 49 ◦ v ◦ r 14 ] ◦ [ r 48 ◦ v ◦ r 15 ] ◦ · · · ◦ [ r 42 ◦ v ◦ r 21 ] ◦ [ r 41 ◦ v 9 ◦ r 14 ] • 9 brackets: each takes 64 operations → 64 ∗ (49 − 40) = 576 cycles !!! 25 of 44

  26. Present Permutation Table: Specifications of Present bit-permutation layer. i 0 1 2 3 4 5 6 7 P ( i ) 0 16 32 48 1 17 33 49 8 9 10 11 12 13 14 15 i P ( i ) 2 18 34 50 3 19 35 51 i 16 17 18 19 20 21 22 23 P ( i ) 4 20 36 52 5 21 37 53 24 25 26 27 28 29 30 31 i P ( i ) 6 22 38 54 7 23 39 55 i 32 33 34 35 36 37 38 39 P ( i ) 8 24 40 56 9 25 41 57 40 41 42 43 44 45 46 47 i P ( i ) 10 26 42 58 11 27 43 59 i 48 49 50 51 52 53 54 55 P ( i ) 12 28 44 60 13 29 45 61 56 57 58 59 60 61 62 63 i P ( i ) 14 30 46 62 15 31 47 63 26 of 44

Recommend


More recommend