Lesson 3.1: Law of Sines
Distance to the Moon Donaueschingen, Germany Bochum, Germany
If ABC is a Δ with sides a, b, & c, then B B a h c C b A a c h a b c = = Sin A Sin B Sin C C b A
20 b Ex 1: Solve the Δ . b = sin 30 sin 45 C b 20 sin 45 sin 30 b a=20 b 2828 . 45 ° 30 ° 20 c B c A c = sin 30 sin 105 m C = 180 – (30 + 45) c 20 sin 105 = 180 – 75 sin 30 = 105 ° c 3864 .
a 22 Ex 2: Find the height of the pole. sin 43 sin 39 a c = C Sin A Sin C a 22 sin 43 sin 39 39 ° b 2384 a . feet a 8 ° 43 ° A B 22 ft
WARNING! WARNING! DANGER, Will Robinson! DANGER! If 2 sides and 1 opposite angle are given, then 3 possibilities exist: 1. No Δ exists 2. 1 Δ exists 3. 2 distinct Δ s exist (see book, p.280)
Ex 3: Show that there is no Δ for which a = 15, b = 25 and m A = 85 ° 15 25 B 25 sin 85 sin sin 85 sin B 15 C B 1660324497 sin . 15 25 > 1, outside 85 ° range of sine and no Δ exists. B A See p.280 & 281 for other examples.
Distance to the Moon 251,502.8 mi 419,171.4 km x 52.6997 ⁰ 52.7430 ⁰ 398 km Donaueschingen, Germany Bochum, Germany Homework: p.284 #2-8 even + #14
Recommend
More recommend