lepton flavor violation present and future experiments 1
play

Lepton Flavor Violation: present and future experiments - 1 LNF- - PowerPoint PPT Presentation

Lepton Flavor Violation: present and future experiments - 1 LNF- May, 11ht 2008 F.Gatti University and INFN of Genoa First experiment: E.P.Hincks and B. Pontecorvo (1948) At that time the motivation for a such searches was motivated


  1. Lepton Flavor Violation: present and future experiments - 1 LNF- May, 11ht 2008 F.Gatti University and INFN of Genoa

  2. First experiment: E.P.Hincks and B. Pontecorvo (1948) At that time the  motivation for a such searches was motivated by the general study of m decay Lead Degrader n e, n m and e  spectrum not discoverd m was supposed  to decay in e + n e (Yukawa) target PR 73 (1948)

  3. History and future of FLV m decay searches MEG (2010) Cosmic m Mu2e PRIME stopped p m beams

  4. background signal m  e g accidental m  e n n physical m  e g n n m  e g n n ee  g g e + m + g (radiative decay) eZ  eZ g n n e + m + g q e g = 180° n n e + m + E e = E g = 52.8 MeV T e = T g g

  5. The last of a series Exp./Lab Year D E e /E D E g D t eg Dq eg Stop rate Duty BR /E g (ns) cyc.(% (s -1 ) (mrad (90% CL) e ) (%) (%) ) 197 5 x 10 5 3.6 x 10 -9 SIN 8.7 9.3 1.4 - 100 7 197 2 x 10 5 1 x 10 -9 TRIUMF 10 8.7 6.7 - 100 7 197 LANL 8.8 8 1.9 37 2.4 x 10 5 6.4 1.7 x 10 -10 9 198 4 x 10 5 4.9 x 10 -11 Crystal Box 8 8 1.3 87 (6..9) 6 199 2.5 x 10 8 1.2 x 10 -11 MEGA 1.2 4.5 1.6 17 (6..7) 9 201 0.1 MEG 0.8 4 19 2.5 x 10 7 100 1 x 10 -13 0 5

  6. Conceptual design of MEG Liq. Xe Scintillation Liq. Xe Scintillation Detector Detector Thin Superconducting Coil g Stopping Target g Muon Beam + e + Timing Counter e Drift Chamber Drift Chamber 1m

  7. Actual MEG configuration  Liquid Xenon Calorimeter  Drift Chambers  Timing counters  COBRA Magnet

  8. PSI-beam The most powerful continuous machine in the world;  Proton energy 590 MeV ; Power 1.1 MW ;n ominal operational  current 2.0 mA. 27.7 MeV/c muons from p stop at rest ( surface muons );  Provides a DC beam of  10 8 m/s .  Primary proton beam

  9. PSI-Beam The beam elements:  Wien filter for m /e separation  Degrader to reduce the  momentum stopping in a 150 m m CH2 target Transport Solenoid to couple  beam with COBRA spectrometer R m (total) 1.3*108 m + /s  R m (after W.filter & Coll.) 1.1*10 8 m + /s  6*10 7 m + /s R m (stop in target)  s  10 mm Beam spot (target)  m /e separation 7.5 s (12 cm)  Maximum beam stop rate  10 8 m /s, • but we will use only 3 x 10 7 because of accidental background (proportional to (muon rate) 2 )

  10. COnstant Bending RAdius- COBRA- magnet COBRA spectrometer was designed to provide a graded magnetic field whose flux lines have large divergence also in the center (1.27 T at the center and 0.49 T at both ends). Positrons with the same absolute momentum follow trajectories with a constant projected bending radius, independent on the emission angles over a wide angular range.

  11. COBRA-magnet  Constant bending radius independent of emission angles Gradient field Uniform field  High p T positrons quickly swept out Gradient field Uniform field

  12. Target and positron tracking

  13. Positron Tracking Sixteen drift chambers (ten  degrees interval), each one equipped with 18 staggered wires and cathodic kapton foils. Wires: r , f coordinates  Cathode: z coordinate  s (X,Y) ~ 200 m m  Chamber gas: He-C 2 H 6  mixture Vernier pattern to measure z-  position made of 15 m m kapton foils(charge division) s (Z) ~ 300 m m 

  14. Positron timing- Timing Counter APD Cooled Support TC Final Design APD F.E. Board Scintillating Fibers • A PLASTIC SUPPORT APD STRUCTURE ARRANGES THE SCINTILLATOR BARS AS REQUESTED PM • THE BARS ARE GLUED ONTOTHE SUPPORT • INTERFACE ELEMENTS ARE GLUED ONTO THE Ladder Board BARS AND SUPPORT THE FIBRES & cabling • FIBRES ARE GLUED AS WELL Main Support • TEMPORARY ALUMINIUM BEAMS ARE USED TO HANDLE THE DETECTOR DURING INSTALLATION BC404-Scintillator slab • PTFE SLIDERS WILL ENSUREA SMOOTH MOTION ALONG THE RAILS Scintillator Housing PM-Scintillator Coupling

  15. Positron timing- Timing Counter Two layers of scintillation counters placed at right  angles with each other. Outer layer: scintillator bars, mainly devoted to  timing measurement. Two sections of 15 bars each, read by PMTs,  before and after DCH system. Inner layer: scintillating fibres, devoted to provide  trigger and z information. 5 x 5 mm2 fibres, read by APDs.  Measurements of TC bars timing resolution in  dedicated test beams at several positions and impact angles at BTF in Frascati

  16. Limitations due to the B field PMT TTS, gain as a function of magnetic field and orientation  angles Scintillation time, attenuation length, PMT-bar coupling  Fine-mesh PMTs show good timing properties even in magnetic  field up to 1 Tesla Gain behaviour is related to the orientation angle – best for q =  20-30° A high number of photoelectrons is necessary to be in a 100 ps  resolution range 200 200 4.0 1100 photoelectrons 1100 photoelectrons q =0° 180 180 300 photoelectrons 300 photoelectrons 60 photoelectrons 60 photoelectrons q =20° 3.5 160 160 q =30° 3.0 140 140 time resolution  25 ps 120 120 2.5 s (ps) 100 100 2.0 80 80 1.5 60 60 1.0 40 40 0.5 20 20 Inner position PMT Outer position PMT 0 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 5 10 15 20 0 5 10 15 20 geometric angle (degrees) magnetic field (T)

  17. B field and He atmosphere Optimization of angular position of PMs  Protecting Bag with thin low diffusivity plastics (EVAL T)  COBRA BORE 1 atm He4 N2Bag Gas Flushing

  18. Experimental constraints: re- shaping the TC elements Scintillator Cross 5mm 5mm Section Sectional view PM active diameter: 39 mm PM outer Diameter :52 mm From 105 cm 25 cm COBRA center 8.5º 19º 22º 11º B 0.75 T B Long. view 1.05 T

  19. Testing single element at Beam Test Facility (LNF) Apparatus for 2-axis + longitidinal Typical BTF beam performance sample movements

  20. Single element timing resolution BC 404 110 2160 2180 2200 2220 2240 100 100 80 time resolution @ FWHM (ps) 90 90.0° 60 65.0° 80 53.5° 40 40.0° 70 79.1 ps @ FWHM 20 counts/6.33 ps 130 0 100 120 75 110 50 100 25 BC 408 108.3 ps @ FWHM 90 -40 -30 -20 -10 0 0 3345 3360 3375 3390 3405 3420 distance from the MCA channel number

  21. Timing performance with some other ToF 1. B. Adeva et al. , Nucl. Instr. and  s Scintil. PMT LxWxT Ref Meth A 491 (2002) 41. type (cm) (ps) . 2. G. Palla et al. , Nucl. Instr. and  Meth. A 451 (2000) 406. BC420 R1828-01 40x7x2.2 123 1 3. V. Sum et al. , Nucl. Instr. and  Meth. A 326 (1993) 489. BC408 R3478 12-48x1-1.25x1.5-2.4 80 2 4. M. Baldo-Ceolin et al., Nucl.  Instr. and Meth. A 532 (2004) BC408 H1949 200x8.5x5 110 3 548. 5. Y. Kubota et al. , Nucl. Instr.  BC408 XP2020 180-250x21x2.5 160 4 and Meth. A 320 (1992) 66. 6. M. Baldo Ceolin et al. , Nuovo  BC408 XP2020 280x10x5 139 5 Cimento 105A (1992) 1679. 7. G.C. Bonazzola et al. , Nucl.  NE110 † XP2020 210-300x21x2 300 6 Instr. and Meth. A 356 (1995) 270. NE110 † XP2020 300x9.3x4 170 7 8. S. Benerjee et al. , Nucl. Instr.  and Meth. A 269 (1988) 121. BC408 XP2020 305x10x5 110 8 9. E.S. Smith et al. , Nucl. Instr.  and Meth A 432 (1999) 265 NE Pilot F ‡ XP2020 317.5x15.6x5.1 170 9 10 J.S. Brown et al. , Nucl. Instr.  and Meth. 221 (1984) 503. BC408 XP43132B/D1 32-450x15-22x5.1 163 10 BC404 R5924 80x4x4 40 our

  22. Final detector, test at BTF (LNF) and run performance DTD Time resolution s = 52 ps (with low z-cuts) Run Conditions

  23. APD readout of scintillating fibers detectors New solution with APD and scintillating fibers: 1. High QE of APD 2. Good performances, not influenced by magnetic field 3. Optimum matching APD-fiber 4. Better spatial resolution (5mm) 5. Lower cost per channel (total 512 channels) 6. Fast - Low noise electronics for analog signals (ENC = 1500e) custom made 7. Digital output with hitmap encoding R1 10 0k R8 33 0 V3 400 V2 5 R2 10 0k R5 33 0 R7 13k T1 2N3955 C1 10n C2 80 p - R3 10 C3 10 0p IG1 - VF3 + + R4 10 DIS T2 2N3955 + 145000 e- + DIS 1ns U2 OPA847 U1 OPA847 2 x MMBF4392 V1 5 2 x OPA847 R6 100k C4 1p ----- V4 5 DIS

  24. Avalanche Photo-Diodes (APD) Dark noise Total noise of illuminated APD including Shot niose, excess noise, photon noise Excess noise factor at M=500 x= 0.5

  25. APDs production I dark vs H.V. Temperature 20°C 1.00E+01 APDJA0304_20ID_M APDJA0316_20ID_M APDJA0305_20ID_M I=50 nA APDJA0288_20ID_M APDJA0296_20ID_M APDJA0302_20ID_M 1.00E+00 APDJA0307_20ID_M I dark@ 10Mohm (Volts) APDJA0312_20ID_M I dark vs H.V. Temperature 20°C APDJA0308_20ID_M Selected samples APDJA0309_20ID_M 1.00E+01 APDJA0311_20ID_M 1.00E-01 from Hamamatsu Irradiatted samples of CMS APDJA0295_20ID_M APDJA0289_20ID_M APDJa0290_20ID_M APDJA0292_20ID_M APDJA0294_20ID_M 1.00E-02 1.00E+00 APDJA0307_20ID_M I Dark @ 10Mohm (Volts) 1.00E-03 2.50E+02 3.00E+02 3.50E+02 4.00E+02 4.50E+02 5.00E+02 1.00E-01 H.V. (Volts) 1.00E-02 MEG APD s 1.00E-03 2.50E+02 3.00E+02 3.50E+02 4.00E+02 4.50E+02 5.00E+02 H.V. (Volts)

  26. Fiber detector under run consitions 8 Channels analog sum 8 Channels 8 Channels analog sum analog sum Signal of 8+8 Interleaved fibers

Recommend


More recommend