lattice tmd observables at the physical pion mass michael
play

Lattice TMD observables at the physical pion mass Michael Engelhardt - PowerPoint PPT Presentation

Lattice TMD observables at the physical pion mass Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. H agler, J. Negele, A. Sch afer J. R. Green, N. Hasan, S. Krieg, S. Meinel, A. Pochinsky, S. Syritsyn T.


  1. Lattice TMD observables at the physical pion mass Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. H¨ agler, J. Negele, A. Sch¨ afer J. R. Green, N. Hasan, S. Krieg, S. Meinel, A. Pochinsky, S. Syritsyn T. Bhattacharya, R. Gupta, B. Yoon S. Liuti, A. Rajan

  2. Fundamental TMD correlator unsubtr. ( b, P, S, . . . ) ≡ 1 Φ [Γ] � 2 � P, S | ¯ q (0) Γ U [0 , . . . , b ] q ( b ) | P, S � � � Φ [Γ] d 2 b T � � � � d ( b · P ) unsubtr. ( b, P, S, . . . ) � � Φ [Γ] ( x, k T , P, S, . . . ) ≡ � (2 π ) P + exp ( ix ( b · P ) − ib T · k T ) � � (2 π ) 2 S ( b 2 , . . . ) � � � � � � b + =0 � • “Soft factor” S required to subtract divergences of Wilson line U � • S is typically a combination of vacuum expectation values of Wilson line structures • Here, will consider only ratios in which soft factors cancel

  3. Gauge link structure motivated by SIDIS � �� � � � �� � � �� � Beyond tree level: Rapidity divergences suggest taking staple direction slightly off the light cone. Approach of Aybat, Collins, Qiu, Rogers makes v space-like. Parametrize in terms of Collins-Soper parameter ζ ≡ P · v ˆ | P || v | Light-like staple for ˆ ζ → ∞ . Perturbative evolution equations for large ˆ ζ . “Modified universality”, f T-odd, SIDIS = − f T-odd, DY

  4. Fundamental TMD correlator unsubtr. ( b, P, S, . . . ) ≡ 1 Φ [Γ] � 2 � P, S | ¯ q (0) Γ U [0 , ηv, ηv + b, b ] q ( b ) | P, S � � � Φ [Γ] d 2 b T � � � � d ( b · P ) unsubtr. ( b, P, S, . . . ) � � Φ [Γ] ( x, k T , P, S, . . . ) ≡ � (2 π ) P + exp ( ix ( b · P ) − ib T · k T ) � � (2 π ) 2 S ( b 2 , . . . ) � � � � � � b + =0 � • “Soft factor” S required to subtract divergences of Wilson line U � • S is typically a combination of vacuum expectation values of Wilson line structures • Here, will consider only ratios in which soft factors cancel

  5. Decomposition of Φ into TMDs All leading twist structures:   ǫ ij k i S j Φ [ γ + ] = f 1 − f ⊥      odd   1 T  m H Φ [ γ + γ 5 ] = Λ g 1 + k T · S T g 1 T m H Φ [ iσ i + γ 5 ] = S i h 1 + (2 k i k j − k 2   T δ ij ) S j 1 T + Λ k i ǫ ij k j h ⊥ h ⊥ h ⊥   1 L +    odd   1 2 m 2  m H m H H

  6. TMD Classification All leading twist structures: q → H U L T ↓ h ⊥ U f 1 ← − Boer-Mulders 1 (T-odd) h ⊥ L g 1 1 L f ⊥ h ⊥ T g 1 T h 1 1 T 1 T ↑ Sivers (T-odd)

  7. � Decomposition of Φ into amplitudes ζ, µ ) ≡ 1 Φ [Γ] unsubtr. ( b, P, S, ˆ � 2 � P, S | ¯ q (0) Γ U [0 , ηv, ηv + b, b ] q ( b ) | P, S � Decompose in terms of invariant amplitudes; at leading twist, 1 Φ [ γ + ] � � � unsubtr. = A 2 B + im H ǫ ij b i S j A 12 B 2 P + 1 Φ [ γ + γ 5 ] � � � unsubtr. = − Λ A 6 B + i [( b · P )Λ − m H ( b T · S T )] A 7 B 2 P + 1 Φ [ iσ i + γ 5 ] � � � = im H ǫ ij b j A 4 B − S i A 9 B unsubtr. 2 P + � � − im H Λ b i A 10 B + m H [( b · P )Λ − m H ( b T · S T )] b i A 11 B (Decompositions analogous to work by Metz et al. in momentum space)

  8. � Relation between Fourier-transformed TMDs and invariant amplitudes A i Invariant amplitudes directly give selected x -integrated TMDs in Fourier ( b T ) space (showing just the ones relevant for Sivers, Boer-Mulders shifts), up to soft factors: f [1](0) ˜ ( b 2 T , ˆ A 2 B ( − b 2 T , 0 , ˆ S ( b 2 , . . . ) � � ζ, . . . , ηv · P ) = 2 ζ, ηv · P ) / 1 f ⊥ [1](1) ˜ ( b 2 T , ˆ A 12 B ( − b 2 T , 0 , ˆ S ( b 2 , . . . ) � � ζ, . . . , ηv · P ) = − 2 ζ, ηv · P ) / 1 T h ⊥ [1](1) ( b 2 A 4 B ( − b 2 S ( b 2 , . . . ) ˜ T , ˆ T , 0 , ˆ � � ζ, . . . , ηv · P ) = 2 ζ, ηv · P ) / 1

  9. Generalized shifts Form ratios in which soft factors, (Γ-independent) multiplicative renormalization factors cancel Boer-Mulders shift: � h ⊥ [1](1) dx d 2 k T k y Φ [ γ + + s j iσ j + γ 5 ] ( x, k T , P, . . . ) � ˜ � � � � 1 � � � k y � UT ≡ m H = � � dx d 2 k T Φ [ γ + + s j iσ j + γ 5 ] ( x, k T , P, . . . ) f [1](0) � � � ˜ � � 1 � s T =(1 , 0) Average transverse momentum of quarks polarized in the orthogonal transverse (“ T ”) direction in an unpolarized (“ U ”) hadron; normalized to the number of valence quarks. “Dipole moment” in b 2 T = 0 limit, “shift”. Issue: k T -moments in this ratio singular; generalize to ratio of Fourier-transformed TMDs at nonzero b 2 T , h ⊥ [1](1) ˜ ( b 2 T , . . . ) 1 � k y � UT ( b 2 T , . . . ) ≡ m H f [1](0) ˜ ( b 2 T , . . . ) 1 (remember singular b T → 0 limit corresponds to taking k T -moment). “Generalized shift”.

  10. Generalized shifts from amplitudes Now, can also express this in terms of invariant amplitudes: h ⊥ [1](1) ˜ T , 0 , ˆ ( b 2 A 4 B ( − b 2 � T , . . . ) ζ, ηv · P ) 1 � k y � UT ( b 2 T , . . . ) ≡ m H = m H T , 0 , ˆ A 2 B ( − b 2 f [1](0) ˜ � ( b 2 ζ, ηv · P ) T , . . . ) 1 Analogously, Sivers shift (in a polarized hadron): T , 0 , ˆ A 12 B ( − b 2 � ζ, ηv · P ) � k y � TU ( b 2 T , . . . ) = − m H T , 0 , ˆ A 2 B ( − b 2 � ζ, ηv · P ) Worm-gear ( g 1 T ) shift: A 7 B ( − b 2 T , 0 , ˆ � ζ, ηv · P ) � k x � TL ( b 2 T , . . . ) = − m N T , 0 , ˆ A 2 B ( − b 2 � ζ, ηv · P ) Generalized tensor charge (no k -weighting) : h [1](0) ˜ A 9 B ( − b 2 T , 0 , ˆ ζ, ηv · P ) − ( m 2 N b 2 / 2) A 11 B ( − b 2 T , 0 , ˆ � � ζ, ηv · P ) 1 = − T , 0 , ˆ A 2 B ( − b 2 f [1](0) � ˜ ζ, ηv · P ) 1

  11. Lattice setup Φ [Γ] unsubtr. ( b, P, S, ˆ � • Evaluate directly ζ, µ ) ������� ������� ≡ 1 2 � P, S | ¯ q (0) Γ U [0 , ηv, ηv + b, b ] q ( b ) | P, S � ���� ������ ���������������� ���������������� • Euclidean time: Place entire operator at one time � � slice, i.e., b , ηv purely spatial � � • Since generic b , v space-like, no obstacle to boost- � � ing system to such a frame! � � ��� � � • Parametrization of correlator in terms of A i in- variants permits direct translation of results back � to original frame; form desired A i ratios. � � • Use variety of P , b , ηv ; here b ⊥ P , b ⊥ v (lowest ��������� x -moment, kinematical choices/constraints) � ��� � ��� ���� τ • Extrapolate η → ∞ , ˆ ζ → ∞ numerically.

  12. ✞ Results: Sivers shift Dependence on staple extent; sequence of panels at different | b T | 0.6 0.6 Sivers � Shift, u � d � quarks Sivers - Shift, u - d - quarks [ 1 ] ( 0 ) ( GeV ) � 1 � � 0 � � GeV � 0.4 0.4 0.2 0.2 1 1 ˜ � � � 1 � � 1 � � f 0.0 [ 1 ] ( 1 ) / f 0.0 ✄ = 0.24, � � 0.32, Ζ ✂ - 0.2 � 0.2 | b T | = 0.11 fm , 1T 1T � b T � � 0.11 fm, ˜ � m N f m N f ☎ = 139 MeV m m Π � 317 MeV - 0.4 � 0.4 ✁ DY SIDIS � DY SIDIS � � - 0.6 � 0.6 �� � - ✆ - 10 - 5 0 5 10 � 10 � 5 0 5 10 ✆ Η � v � � lattice units � ✝ | v | ( lattice units )

  13. ✞ Results: Sivers shift Dependence on staple extent; sequence of panels at different | b T | 0.6 0.6 Sivers � Shift, u � d � quarks Sivers - Shift, u - d - quarks [ 1 ] ( 0 ) ( GeV ) � 1 � � 0 � � GeV � 0.4 0.4 0.2 0.2 1 1 ˜ � � � 1 � � 1 � � f 0.0 [ 1 ] ( 1 ) / f 0.0 ✄ = 0.24, � � 0.32, Ζ ✂ - 0.2 � 0.2 | b T | = 0.23 fm , 1T 1T � b T � � 0.23 fm, ˜ � m N f m N f ☎ = 139 MeV m m Π � 317 MeV - 0.4 � 0.4 ✁ DY SIDIS � DY SIDIS � � - 0.6 � 0.6 �� � - ✆ - 10 - 5 0 5 10 � 10 � 5 0 5 10 ✆ Η � v � � lattice units � ✝ | v | ( lattice units )

  14. ✞ Results: Sivers shift Dependence on staple extent; sequence of panels at different | b T | 0.6 0.6 Sivers � Shift, u � d � quarks Sivers - Shift, u - d - quarks [ 1 ] ( 0 ) ( GeV ) � 1 � � 0 � � GeV � 0.4 0.4 0.2 0.2 1 1 ˜ � � � 1 � � 1 � � f 0.0 [ 1 ] ( 1 ) / f 0.0 ✄ = 0.24, � � 0.32, Ζ ✂ - 0.2 � 0.2 | b T | = 0.34 fm , 1T 1T � b T � � 0.34 fm, ˜ � m N f m N f ☎ = 139 MeV m m Π � 317 MeV - 0.4 � 0.4 ✁ DY SIDIS � DY SIDIS � � - 0.6 � 0.6 �� � - ✆ - 10 - 5 0 5 10 � 10 � 5 0 5 10 ✆ Η � v � � lattice units � ✝ | v | ( lattice units )

  15. ✞ Results: Sivers shift Dependence on staple extent; sequence of panels at different | b T | 0.6 0.6 Sivers � Shift, u � d � quarks Sivers - Shift, u - d - quarks [ 1 ] ( 0 ) ( GeV ) � 1 � � 0 � � GeV � 0.4 0.4 0.2 0.2 1 1 ˜ � � � 1 � � 1 � � f 0.0 [ 1 ] ( 1 ) / f 0.0 ✄ = 0.24, � � 0.32, Ζ ✂ - 0.2 � 0.2 | b T | = 0.46 fm , 1T 1T � b T � � 0.46 fm, ˜ � m N f m N f ☎ = 139 MeV m m Π � 317 MeV - 0.4 � 0.4 ✁ DY SIDIS � DY SIDIS � � - 0.6 � 0.6 �� � - ✆ - 10 - 5 0 5 10 � 10 � 5 0 5 10 ✆ Η � v � � lattice units � ✝ | v | ( lattice units )

Recommend


More recommend