lattice qcd calculation of nucleon tensor charge
play

Lattice QCD Calculation of Nucleon Tensor Charge T. Bhattacharya, - PowerPoint PPT Presentation

Lattice QCD Calculation of Nucleon Tensor Charge T. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin, B. Yoon PNDME Collaboration Los Alamos National Laboratory Jan 22, 2015 1 / 36 Neutron EDM, Quark EDM and Tensor Charge Quark EDMs at


  1. Lattice QCD Calculation of Nucleon Tensor Charge T. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin, B. Yoon PNDME Collaboration Los Alamos National Laboratory Jan 22, 2015 1 / 36

  2. Neutron EDM, Quark EDM and Tensor Charge • Quark EDMs at dim=5 L = − i � qσ µν γ 5 qF µν d q ¯ 2 q = u,d,s • Neutron EDM from qEDMs d N = d u g u,N + d d g d,N + d s g s,N T T T • Hadronic part: nucleon tensor charge qσ µν q | N � = g q,N ¯ � N | ¯ ψ N σ µν ψ N T 2 / 36

  3. Neutron EDM, Quark EDM and Tensor Charge • d q ∝ m q in many models y u ≈ 1 y s d q = y q δ q ; 2 , ≈ 20 y d y d d N = d u g u,N + d d g d,N + d s g s,N T T T � � + 1 δ u + 20 δ s g d,N g u,N g s,N = d d T T T 2 δ d δ d ⇒ Precision determination of g s,N is important T 3 / 36

  4. Lattice QCD • Non-perturbative approach to understand QCD • Formulated on discretized Euclidean space-time – Hypercubic lattice – Lattice spacing “ a ” – Quark fields placed on sites – Gauge fields on the links between sites; U µ 4 / 36

  5. Physical Results from Unphysical Simulations • Finite Lattice Spacing – Simulations at finite lattice spacings a ≈ 0 . 06 , 0 . 09 & 0 . 12 fm ⇒ Extrapolate to continuum limit, a = 0 • Heavy Pion Mass – Lattice simulation: Smaller quark mass − → Larger computational cost – Simulations at (heavy) pion masses M π ≈ 130 , 210 & 310 MeV ⇒ Extrapolate to physical pion mass, M π = M phys π • Finite Volume – Simulations at finite lattice volume M π L = 3 . 2 ∼ 5 . 4 ( L = 2 . 9 ∼ 5 . 8 fm ) ⇒ Extrapolate to infinite volume, M π L = ∞ 5 / 36

  6. MILC HISQ Lattices, n f = 2 + 1 + 1 L 3 × T ID a (fm) M π (MeV) M π L 24 3 × 64 a12m310 0.1207(11) 305.3(4) 4.54 24 3 × 64 a12m220S 0.1202(12) 218.1(4) 3.22 32 3 × 64 a12m220 0.1184(10) 216.9(2) 4.29 40 3 × 64 a12m220L 0.1189(09) 217.0(2) 5.36 32 3 × 96 a09m310 0.0888(08) 312.7(6) 4.50 48 3 × 96 a09m220 0.0872(07) 220.3(2) 4.71 64 3 × 96 a09m130 0.0871(06) 128.2(1) 3.66 48 3 × 144 a06m310 0.0582(04) 319.3(5) 4.51 64 3 × 144 a06m220 0.0578(04) 229.2(4) 4.25 • Fermion discretization : Clover (valence) on HISQ (sea) • HYP smearing – reduce discretization artifact • m u = m d 6 / 36

  7. Three-point Function Diagrams ME ∼ � N | q i σ µν q j | N � • Quark-line connected / disconnected diagrams • Disconnected diagrams : complicated and expensive on lattice 7 / 36

  8. Connected Quark Loop Contribution 8 / 36

  9. Nucleon Charge on Lattice • Nucleon tensor charge g q T is defined by qσ µν q | N � = g q T ¯ � N | ¯ ψ N σ µν ψ N • On lattice, g q T is extracted from ratio of 3-pt and 2-pt function C 3pt /C 2pt − → g q Γ – C 2pt = � 0 | χ ( t s ) χ (0) | 0 � , C 3pt = � 0 | χ ( t s ) O ( t i ) χ (0) | 0 � – χ : interpolating operator of proton • χ introduces excited states of proton t sep ¡ t ins ¡ 0 ¡ 9 / 36

  10. Removing Excited States Contamination t ins ¡ ¡ ¡ ¡∞ ¡ t sep -­‑ ¡t ins ¡ ¡ ¡ ¡∞ ¡ t sep ¡ 0 ¡ t ins ¡ • Separating proton sources far from each other − → small excited state effect, but weak signal • Put operator reasonable range, remove excited state by fitting to C 2pt ( t sep ) = A 1 e − M 0 t sep + A 2 e − M 1 t sep C 3pt ( t sep , t ins ) = B 1 e − M 0 t sep + B 2 e − M 1 t sep � e − M 0 t ins e − M 1 ( t sep − t ins ) + e − M 1 t ins e − M 0 ( t sep − t ins ) � + B 12 10 / 36

  11. Removing Excited States Contamination (a12m310) 1.24 t sep =10 Extrap t sep =8 t sep =11 1.20 t sep =9 t sep =12 con, u-d 1.16 1.12 g T 1.08 a12m310 1.04 -4 -2 0 2 4 t - t sep /2 • Small excited state contamination (compared to g A , g S ) 11 / 36

  12. Removing Excited States Contamination (a09m310) 1.16 Extrap t sep =10 1.12 t sep =12 con, u-d t sep =14 1.08 g T 1.04 a09m310 1.00 -6 -4 -2 0 2 4 6 t - t sep /2 • Small excited state contamination (compared to g A , g S ) 12 / 36

  13. MILC HISQ Lattices, n f = 2 + 1 + 1 L 3 × T ID a (fm) M π (MeV) M π L 24 3 × 64 a12m310 0.1207(11) 305.3(4) 4.54 24 3 × 64 a12m220S 0.1202(12) 218.1(4) 3.22 32 3 × 64 a12m220 0.1184(10) 216.9(2) 4.29 40 3 × 64 a12m220L 0.1189(09) 217.0(2) 5.36 32 3 × 96 a09m310 0.0888(08) 312.7(6) 4.50 48 3 × 96 a09m220 0.0872(07) 220.3(2) 4.71 64 3 × 96 a09m130 0.0871(06) 128.2(1) 3.66 48 3 × 144 a06m310 0.0582(04) 319.3(5) 4.51 64 3 × 144 a06m220 0.0578(04) 229.2(4) 4.25 13 / 36

  14. Renormalization of Bilinear Operators qσ µν q • Lattice results = ⇒ MS scheme at 2 GeV • Non-perturbative renormalization using RI-sMOM scheme • Calculate ratio Z T /Z V : reduce lattice artifact • Renormalized Tensor Charge : × g bare = Z T g renorm T (Use Z V g u − d = 1 ) T g bare V Z V V a (fm) Z T /Z V 0.12 1.01(3) 0.09 1.05(3) 0.06 1.07(4) 14 / 36

  15. Simultaneous extrapolation of ( a, M π , M π L ) g T ( a, M π , L ) = c 1 + c 2 a + c 3 M 2 π + c 4 e − M π L La#ce ¡Spacing ¡ ¡ a → 0 Pion ¡Mass ¡ M π → M π phys La#ce ¡Volume ¡ M π L → ∞ u g T d g T Preliminary! 15 / 36

  16. Simultaneous extrapolation of ( a, M π , M π L ) g T ( a, M π , L ) = c 1 + c 2 a + c 3 M 2 π + c 4 e − M π L La#ce ¡Spacing ¡ ¡ a → 0 Pion ¡Mass ¡ M π → M π phys La#ce ¡Volume ¡ M π L → ∞ u − d g T u + d g T Preliminary! 16 / 36

  17. Disconnected Quark Loop Contribution 17 / 36

  18. Disconnected Contribution to the Nucleon Charges Disconnected part of the ratio of 3pt func to 2pt func � C 3pt � disc = −� C 2pt ( t s ) � x Tr[ M − 1 ( t i , x ; t i , x ) σ µν ] � C 2pt � C 2pt ( t s ) � • M : Dirac operator • Tr[ M − 1 ( t i , x ; t i , x ) σ µν ] : disconnected quark loop t ins ¡ t sep ¡ 0 ¡ 18 / 36

  19. Difficulties in Disconnected Diagram Calculation � disc � C 3pt = −� C 2pt ( t s ) � x Tr[ M − 1 ( t i , x ; t i , x ) σ µν ] � C 2pt � C 2pt ( t s ) � • Connected calculation needs only point–to–all propagators Disconnected quark loop needs all– x –to–all propagators ⇒ Computationally L 3 times more expensive; need new technique • Noisy signal ⇒ Need more statistics t ins ¡ t sep ¡ 0 ¡ 19 / 36

  20. Improvement & Error Reduction Techniques • Multigrid Solver [Osborn, et al. , 2010; Babich, et al. , 2010] • All-Mode Averaging (AMA) for Two-point Correlators [Blum, Izubuchi and Shintani, 2013] • Hopping Parameter Expansion (HPE) [Thron, et al. , 1998; McNeile and Michael , 2001] • Truncated Solver Method (TSM) [Bali, Collins and Sch¨ afer, 2007] • Dilution [Bernardson, et al. , 1994; Viehoff, et al. , 1998] 20 / 36

  21. Improved Estimator of Two-point Function N LP N HP C 2pt, imp = 1 1 � � � � C 2pt C 2pt HP ( x j ) − C 2pt LP ( x i ) + LP ( x j ) N LP N HP i =1 j =1 � �� � � �� � LP estimate Crxn term • All-mode averaging (AMA) [Blum, Izubuchi and Shintani, 2013] with Multigrid solver for Clover in Chroma [Osborn, et al. , 2010] • Exploiting translation symmetry & small fluctuation of low-modes • “LP” term is cheap low-precision estimate • “HP” (high-precision) correction term Systematic error ⇒ Statistical error • N LP ≫ N HP brings computational gain (e.g., N LP = 60, N HP = 4) 21 / 36

  22. Truncated Solver Method (TSM) N LP + N HP N LP 1 1 � � � � M − 1 = | s i � LP � η i | + | s i � HP − | s i � LP � η i | E N LP N HP i =1 i = N LP +1 � �� � � �� � LP estimate Crxn term • Stochastic estimate of M − 1 [Bali, Collins and Sch¨ afer, 2007] – Do calculate exact M − 1 , but estimate with reasonable error 1 1 – Computational cost : 100 ∼ 10000 of exact calculation • Same form as AMA - C 2pt − → M − 1 - Sum over source positions − → Sum over random noise sources • | η i � : complex random noise vector • | s i � : solution vector; M | s i � = | η i � 22 / 36

  23. Removing Excited States Contamination t ins ¡ ¡ ¡ ¡∞ ¡ t sep -­‑ ¡t ins ¡ ¡ ¡ ¡∞ ¡ t sep ¡ 0 ¡ t ins ¡ • Interpolating operator introduces excited state contamination • Remove excited state by fitting to C 2pt ( t sep ) = A 1 e − M 0 t sep + A 2 e − M 1 t sep C 3pt ( t sep , t ins ) = B 1 e − M 0 t sep + B 2 e − M 1 t sep � e − M 0 t ins e − M 1 ( t sep − t ins ) + e − M 1 t ins e − M 0 ( t sep − t ins ) � + B 12 23 / 36

  24. Removing Excited States Contamination (a12m310, l ) 0.005 t sep = 9 t sep =11 Extrap t sep = 8 t sep =10 t sep =12 0.000 l, disc -0.005 g T -0.010 -0.015 a12m310 -0.020 -3 -2 -1 0 1 2 3 t - t sep /2 24 / 36

  25. Removing Excited States Contamination (a12m310, s ) 0.015 t sep = 9 t sep =11 Extrap t sep = 8 t sep =10 t sep =12 0.010 0.005 s, disc 0.000 g T -0.005 -0.010 a12m310 -0.015 -3 -2 -1 0 1 2 3 t - t sep /2 25 / 36

Recommend


More recommend