large scale magnetic fields non gaussianity and
play

Large-scale magnetic fields, non- Gaussianity, and gravitational - PowerPoint PPT Presentation

Large-scale magnetic fields, non- Gaussianity, and gravitational waves from inflation Reference: Physical Review D 91, 043509 (2015) [arXiv:1411.4335 [astro-ph.CO]] Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge


  1. Large-scale magnetic fields, non- Gaussianity, and gravitational waves from inflation Reference: Physical Review D 91, 043509 (2015) [arXiv:1411.4335 [astro-ph.CO]] Sakata Memorial KMI Workshop on “Origin of Mass and Strong Coupling Gauge Theories” (SCGT15) Sakata-Hirata Hall, Nagoya University, Nagoya, Japan 5th March, 2015 Presenter : Kazuharu Bamba ( LGSPC, Ochanomizu University )

  2. 2 I. Introduction ・ Galactic magnetic fields ø ö G [Sofue et al ., Annu. Rev. Astron. Astrophys. 24, 459 (1986)] ・ Magnetic fields in clusters of galaxies 0 : 1 à 10 ö G 10kpc à 1Mpc [Clarke et al ., Astrophys. J. 547, L111 (2001)] Recent reviews (examples) * [Kandus et al ., Phys. Rep. 505, 1 (2011)] [Yamazaki et al ., Phys. Rep. 517, 141 (2012)] [Maleknejad et al ., Phys. Rep. (2013)] [Durrer and Neronov, Astron. Astrophys. Rev. 21, 62 (2013)]

  3. 3 Origin of cosmic magnetic fields 1 . Astrophysical process: Plasma instability [Biermann and Schlüter, Phys. Rev. 82, 863(1951)] [Weibel, Phys. Rev. Lett. 2, 83 (1959)] [Hanayama et al ., Astrophys. J. 633, 941 (2005)] [Fujita and Kato, Mon. Not. Roy. Astron. Soc. 364, 247 (2005)] 2 . Cosmolosical processes: ・ Electroweak/Quark-hadron phase transitions [Baym, Bödeker and McLerran, Phys. Rev. D 53, 662 (1996)] [Quashnock, Loeb and Spergel, Astrophys. J. 344, L49 (1989)] ・ Density perturbations [Ichiki et al ., Science 311, 827 (2006)] [Kobayashi, et al , Phys. Rev. D 75, 103501 (2007)]

  4. 4 Origin of cosmic magnetic fields (2) ・ Coherence scale ・ Strength It is difficult to obtain the results to explain the observations. The most natural origin of large-scale magnetic fields: Electromagnetic quantum fluctuations generated at the inflationary stage

  5. 5 Inflationary cosmology [Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981)] [Guth, Phys. Rev. D 23, 347 (1981)] [Starobinsky, Phys. Lett. B 91, 99 (1980)] [Linde, Phys. Lett. B 108, 389 (1982)] [Albrecht and Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)] Inflation: Exponential cosmic acceleration in the early universe 1. Homogeneity, Isotropy, and Flatness 2. Primordial density perturbations

  6. 6 Obstacle ・ Friedmann-Lema tre-Robertson-Walker (FLRW) metric is conformally flat. ・ The Maxwell theory is conformally invariat. The conformal invariance has to be broken at the inflationary stage.

  7. 7 Breaking mechanisms 1. Coupling of a scalar field to electromagnetic fields [Ratra, Astrophys. J. 391, L1 (1992)] [KB and Yokoyama, Phys. Rev. D 69, 043507 (2004); 70, 083508 (2004)] Non-minimal coupling of electromagnetic 2. fields to gravity [Turner and Widrow, Phys. Rev. D 37, 2743 (1988)] [KB and Sasaki, JCAP 0702, 030 (2007)] 3. Trace anomaly [Dolgov, Phys. Rev. D 48, 2499 (1993)]

  8. 8 Motivation and Purpose (1) By comparing the theoretical predictions of a toy model with observations, we obtain phenomenological implications on moduli inflation.

  9. 9 Motivation and Purpose (2) (a) Coupling of the electromagnetic field Model to a scalar field (b) That to a pseudo scalar field (inflaton) Both couplings: Novel point In the past works: Only (b) * E.g.: [Barnaby and Peloso, Phys. Rev. Lett. 106, 181301 (2011)] [Barnaby, Namba and Peloso, JCAP 1104, 009 (2011)] Observables (i) Large-scale magnetic fields (ii) Non-Gaussianity (iii) Tensor-to-scalar ratio

  10. 10 II. Model Gravity term Breaking of the conformal invariance : Reduced Planck mass R : Scalar curvature

  11. 11 Model (2) Ð Coupling of a scalar field to the electromagnetic field õ : Normalization constant ; U (Ð) : Potential of Ð F ö U(1) Y ; : gauge field

  12. 12 Model (3) Y Coupling of a pseudo scalar field (inflaton) to the electromagnetic field g ps : Dimensionless constant à ö÷ F : Dual tensor of F ö÷ M : Mass scale ö V : Normalization Y : Potential of constant (Feature of moduli inflation) m Y : Mass of

  13. 13 Equations of motion (EoM) (1) Flat FLRW space-time a ( t ) : Scale factor Ð EoM for : Hubble parameter Y EoM for (inflaton)

  14. 14 Equations of motion (EoM) (1) U(1) Y EoM for the gauge field F 0 = * : Coulomb gauge Breaking of the conformal invariance : Totally antisymmetric tensor

  15. 15 Slow-roll inflation : Hubble parameter at the inflationary stage a k t = t k : Value of the scale factor at t k : Time when a comoving wavelength of the U(1) Y gauge field first crosses the horizon during inflation

  16. 16 U(1) Y Quantization of gauge field ù 0 = 0 ; Canonical momenta : Comoving Canonical commutation relation wavenumber k = ฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀ : ; Annihilation and Normalization condition creation operators

  17. 17 U(1) Y Circular polarization of gauge field ・ axis to lie along the spatial momentum direction Transverse directions ( ) ・ Circular polarization: : Normalized amplitude

  18. 18 C + ( k; t ) Evolution of (1) C + ( k; t ) : H inf t ø 10 End of After , C + ( k; t ) inflation approaches a constant: For the case of (Dotted line) For the case of dynamical Y (Solid line) Fig. 1 H inf t

  19. 19 C + ( k; t ) Evolution of (2) Values of parameters for Fig.1 ; ; ; ;

  20. 20 C + ( k; t ) Evolution of (3) ・ COBE normalization (Amplitude of power spectrum of the curvature perturbations) k = 0 : 002Mpc à 1 at ・ Planck result (Spectral index of power spectrum of the curvature perturbations) k = 0 : 05Mpc à 1 (68% CL) at [Ade et al . [Planck Collaboration], Astron. Astrophys. 571, A22 (2014)] Slow-roll parameters: à ; ・ : Friedmann equation

  21. 21 III. Current strength of the magnetic fields Proper magnetic field t = t R ・ Instantaneous reheating at û c ý H ・ After reheating, . û c : Cosmic conductivity B proper / a à 2

  22. 22 Current strength of the magnetic fields (2) Tachyon instability / ( X ( t k )) à 1 ø k ñ ø ( t = t k ) ; : Comoving scale : After inflation, the Maxwell theory * is recovered.

  23. 23 Current strength of the magnetic fields (3) Current strength of magnetic fields on the H à 1 Hubble horizon scale : 0 t 0 : Present time 0 ;t 0 ) ø 10 à 64 G B ( H à 1 For Fig. 1

  24. 24 IV. Non-Gaussianity of curvature perturbations ・ Perturbed Einstein equation Metric perturbation = Matter density perturbation (1) Scalar mode (Curvature perturbation) Temperature perturbation of the cosmic microwave îT ' 10 à 5 background (CMB) radiation: T (2) Vector mode (3) Tensor mode (Primordial gravitational wave)

  25. 25 Non-Gaussianity of curvature perturbations (2) ・ U(1) Y F ö We suppose that the gauge field ' couples to another Higgs-like field , which develops a vacuum expectation value, through the kinetic term . [Meerburg and Pajer, JCAP 1302, 017 (2013)] : Covariant derivative for ' g 0 : Gauge coupling The gauge symmetry can spontaneously be broken, so that the gauge field acquires its mass.

  26. 26 Non-Gaussianity of curvature perturbations (3) ・ The number of e -folds of inflation could ' be changed by the perturbations of . ・ The curvature perturbations can be ' generated through the perturbations of . The local-type non-Gaussianity in terms of the curvature perturbations is produced. îN formalism * [Sasaki and Stewart, Prog. Theor. Phys. 95, 71 (1996)] [Starobinsky, JETP Lett. 42, 152(1985)] [Lyth and Rodriguez, Phys. Rev. Lett. 95, 121302 (2005)]

  27. 27 Non-Gaussianity of curvature perturbations (4) Quantity showing the non-Gaussianity [Ade et al . [Planck Collaboration], Astron. Astrophys. 571, A24 (2014)] : Gravitational potential with the Gaussian statistical property

  28. 28 Non-Gaussianity of curvature perturbations (5) g 0 : Gauge coupling [Meerburg and Pajer, JCAP 1302, 017 (2013)] ø k = 2 : 5590616 Planck result (68% CL) [Ade et al . [Planck Collaboration], arXiv:1502.01592]

  29. 29 V. Tensor-to-scalar ratio Power spectrum of the curvature perturbation / k n s à 1 n s : Spectral index Tensor-to-scalar ratio Power spectrum of the tensor mode r TS ñ Power spectrum of the scalar mode

  30. 30 Tensor-to-scalar ratio (2) ; [Barnaby and Peloso, Phys. Rev. Lett. 106, 181301 (2011)] [Barnaby, Namba and Peloso, JCAP 1104, 009 (2011)] Planck result k = 0 : 002Mpc à 1 r TS < 0 : 11 (95% CL) at [Ade et al . [Planck Collaboration], arXiv:1502.02114] Cf. [Ade et al . [Planck Collaboration], arXiv:1502.00612]

  31. 31 VI. Conclusions ・ We have studied the generation of the large- scale magnetic fields from a kind of moduli inflation. ・ We have first estimated the explicit values of three cosmological observables such as the current magnetic fields on the Hubble horizon, local non-Gaussianity, and the tensor-to-scalar ratio. ・ The local non-Gaussianity and tensor-to-scalar ratio obtained in this model are consistent with the Planck results.

  32. 32 Acknowledgments ・ The presenter would like to sincerely appreciate the significant discussions with Professor Tatsuo Kobayashi and Professor Osamu Seto and their kind important suggestions and comments.

  33. Back up slides

Recommend


More recommend