lambek calculus extended with subexponential and bracket
play

Lambek Calculus Extended with Subexponential and Bracket Modalities - PowerPoint PPT Presentation

Lambek Calculus Extended with Subexponential and Bracket Modalities Max Kanovich, Stepan Kuznetsov, Andre Scedrov Basic Categorial Grammar John loves Mary Basic Categorial Grammar John loves Mary np ( np \ s ) / np np Basic Categorial


  1. Lambek Calculus Extended with Subexponential and Bracket Modalities Max Kanovich, Stepan Kuznetsov, Andre Scedrov

  2. Basic Categorial Grammar John loves Mary

  3. Basic Categorial Grammar John loves Mary np ( np \ s ) / np np

  4. Basic Categorial Grammar John loves Mary np ( np \ s ) / np np → s

  5. Basic Categorial Grammar John loves Mary ⊢ np ( np \ s ) / np np → s

  6. Basic Categorial Grammar John loves Mary ⊢ np ( np \ s ) / np np → s Non-commutativity: ⊢ np , np \ s → np (“John runs”), but �⊢ np \ s , np → s ) (“runs John”).

  7. Basic Categorial Grammar John loves Mary ⊢ np ( np \ s ) / np np → s Non-commutativity: ⊢ np , np \ s → np (“John runs”), but �⊢ np \ s , np → s ) (“runs John”). Reduction rules of BCG: A , A \ B → B ; B / A , A → B

  8. Basic Categorial Grammar John loves Mary ⊢ np ( np \ s ) / np np → s Non-commutativity: ⊢ np , np \ s → np (“John runs”), but �⊢ np \ s , np → s ) (“runs John”). Reduction rules of BCG: A , A \ B → B ; B / A , A → B [Ajdukiewicz 1935, Bar-Hillel et al. 1960]

  9. Extending Categorial Grammar John loves Mary

  10. Extending Categorial Grammar John loves Mary ( np \ s ) / np np np

  11. Extending Categorial Grammar John loves Mary ( np \ s ) / np → s np np

  12. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np

  13. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom John loves

  14. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom John loves np / n ( n \ n ) / ( s / np ) ( np \ s ) / np n np

  15. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom John loves np / n ( n \ n ) / ( s / np ) ( np \ s ) / np n np � �� � → s / np

  16. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom John loves ⊢ np / n ( n \ n ) / ( s / np ) ( np \ s ) / np → np n np � �� � → s / np

  17. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom John loves ⊢ np / n ( n \ n ) / ( s / np ) ( np \ s ) / np → np n np � �� � → s / np Deriving principles like np , ( np \ s ) / np → s / np requires extra rules (in this particular case, associativity: ( A \ B ) / C ↔ A \ ( B / C )).

  18. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom John loves ⊢ np / n ( n \ n ) / ( s / np ) ( np \ s ) / np → np n np � �� � → s / np Deriving principles like np , ( np \ s ) / np → s / np requires extra rules (in this particular case, associativity: ( A \ B ) / C ↔ A \ ( B / C )). the boy who loves Mary

  19. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom John loves ⊢ np / n ( n \ n ) / ( s / np ) ( np \ s ) / np → np n np � �� � → s / np Deriving principles like np , ( np \ s ) / np → s / np requires extra rules (in this particular case, associativity: ( A \ B ) / C ↔ A \ ( B / C )). the boy who loves Mary np / n n ( n \ n ) / ( np \ s ) ( np \ s ) / np np

  20. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom John loves ⊢ np / n ( n \ n ) / ( s / np ) ( np \ s ) / np → np n np � �� � → s / np Deriving principles like np , ( np \ s ) / np → s / np requires extra rules (in this particular case, associativity: ( A \ B ) / C ↔ A \ ( B / C )). the boy who loves Mary np / n n ( n \ n ) / ( np \ s ) ( np \ s ) / np np � �� � → np \ s

  21. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom i John loves e i ⊢ np / n ( n \ n ) / ( s / np ) ( np \ s ) / np → np n np � �� � → s / np Deriving principles like np , ( np \ s ) / np → s / np requires extra rules (in this particular case, associativity: ( A \ B ) / C ↔ A \ ( B / C )). the boy who loves Mary ⊢ np / n n ( n \ n ) / ( np \ s ) ( np \ s ) / np np → np � �� � → np \ s

  22. Extending Categorial Grammar John loves Mary ⊢ ( np \ s ) / np → s np np the girl whom i John loves e i ⊢ np / n ( n \ n ) / ( s / np ) ( np \ s ) / np → np n np � �� � → s / np Deriving principles like np , ( np \ s ) / np → s / np requires extra rules (in this particular case, associativity: ( A \ B ) / C ↔ A \ ( B / C )). the boy who i loves Mary e i ⊢ np / n n ( n \ n ) / ( np \ s ) ( np \ s ) / np np → np � �� � → np \ s

  23. Extending Categorial Grammar (cont.) Another example (from Italian, see [Moot and Retor´ e 2012]): “She/He watches the train passing” Guarda passare il treno She/He watches pass the train

  24. Extending Categorial Grammar (cont.) Another example (from Italian, see [Moot and Retor´ e 2012]): “She/He watches the train passing” Guarda passare il treno She/He watches pass the train ⊢ s / inf inf / np np / n → s n

  25. Extending Categorial Grammar (cont.) Another example (from Italian, see [Moot and Retor´ e 2012]): “She/He watches the train passing” Guarda passare il treno She/He watches pass the train ⊢ s / inf inf / np np / n → s n Transform into a question: “What does she/he watch passing?” Cosa guarda passare ? → s Here we need transitivity: A / B , B / C → A / C .

  26. Extending Categorial Grammar (cont.) Another example (from Italian, see [Moot and Retor´ e 2012]): “She/He watches the train passing” Guarda passare il treno She/He watches pass the train ⊢ s / inf inf / np np / n → s n Transform into a question: “What does she/he watch passing?” Cosa guarda passare ? ⊢ q / ( s / np ) s / inf inf / np → s Here we need transitivity: A / B , B / C → A / C .

  27. Extending Categorial Grammar (cont.) Another example (from Italian, see [Moot and Retor´ e 2012]): “She/He watches the train passing” Guarda passare il treno She/He watches pass the train ⊢ s / inf inf / np np / n → s n Transform into a question: “What does she/he watch passing?” Cosa guarda passare ? ⊢ q / ( s / np ) s / inf inf / np → s � �� � → s / np Here we need transitivity: A / B , B / C → A / C .

  28. Extending Categorial Grammar: Two Approaches 1. Add necessary principles as extra axioms to BCG � Combinatory Categorial Grammar (CCG) [Steedman 1996]

  29. Extending Categorial Grammar: Two Approaches 1. Add necessary principles as extra axioms to BCG � Combinatory Categorial Grammar (CCG) [Steedman 1996] 2. One calculus to derive them all! � Lambek Grammar [Lambek 1958]

  30. ∗ ) The Lambek Calculus ( L A → A Π → A ∆ 1 , B , ∆ 2 → C Π , A → B ( / → ) Π → B / A ( → / ) ∆ 1 , B / A , Π , ∆ 2 → C Π → A ∆ 1 , B , ∆ 2 → C A , Π → B ( \ → ) Π → A \ B ( → \ ) ∆ 1 , Π , A \ B , ∆ 2 → C [Lambek 1958, 1961, ...]

  31. ∗ ) The Lambek Calculus ( L A → A Π → A ∆ 1 , B , ∆ 2 → C Π , A → B ( / → ) Π → B / A ( → / ) ∆ 1 , B / A , Π , ∆ 2 → C Π → A ∆ 1 , B , ∆ 2 → C A , Π → B ( \ → ) Π → A \ B ( → \ ) ∆ 1 , Π , A \ B , ∆ 2 → C [Lambek 1958, 1961, ...] ∗ ⊢ ( A \ B ) / C ↔ A \ ( B / C ) L ∗ ⊢ A / B , B / C → A / C L . . .

  32. Properties of the Lambek Calculus ◮ Lambek grammars generate precisely context-free languages [Pentus 1993]. his means that formally their expressive power is not greater than the power of BCGs.

  33. Properties of the Lambek Calculus ◮ Lambek grammars generate precisely context-free languages [Pentus 1993]. This means that formally their expressive power is not greater than the power of BCGs.

  34. Properties of the Lambek Calculus ◮ Lambek grammars generate precisely context-free languages [Pentus 1993]. This means that formally their expressive power is not greater than the power of BCGs. ◮ The Lambek calculus is NP-complete [Pentus 2006, Savateev 2008]. (Steedman’s CCGs enjoy polynomial-time parsing.)

  35. Properties of the Lambek Calculus ◮ Lambek grammars generate precisely context-free languages [Pentus 1993]. This means that formally their expressive power is not greater than the power of BCGs. ◮ The Lambek calculus is NP-complete [Pentus 2006, Savateev 2008]. (Steedman’s CCGs enjoy polynomial-time parsing.) ◮ Polynomial-time algorithm for fragments of bounded depth [Pentus 2010]. (Running time O (2 d n 4 ), where n is the length of the sequent and d is the implication nesting depth.)

  36. Unwanted Derivations book which John laughed without reading

  37. Unwanted Derivations book which John laughed without reading ( CN \ CN ) / ( S / N ) � �� � CN S / N

  38. Unwanted Derivations book which John laughed without reading ⊢ ( CN \ CN ) / ( S / N ) � �� � → CN CN S / N

  39. Unwanted Derivations book which John laughed without reading ⊢ ( CN \ CN ) / ( S / N ) � �� � → CN CN S / N

  40. Unwanted Derivations * book which John laughed without reading ⊢ ( CN \ CN ) / ( S / N ) � �� � → CN CN S / N

Recommend


More recommend