kaon mixing beyond the sm from n f 2 tmqcd
play

Kaon mixing beyond the SM from N f = 2 tmQCD R. Frezzotti (on behalf - PowerPoint PPT Presentation

Kaon mixing beyond the SM from N f = 2 tmQCD R. Frezzotti (on behalf of ETM Collaboration) Univ. and INFN of Rome Tor Vergata GGI workshop New Frontiers in Lattice Gauge Theory Florence, September 19, 2012 R. Frezzotti (on behalf of


  1. Kaon mixing beyond the SM from N f = 2 tmQCD R. Frezzotti (on behalf of ETM Collaboration) Univ. and INFN of Rome – Tor Vergata GGI workshop ”New Frontiers in Lattice Gauge Theory” Florence, September 19, 2012 R. Frezzotti (on behalf of ETM Collaboration)

  2. K 0 oscillations and constraints on new physics (NP) K 0 –¯ Flavour physics processes vanishing at tree level in the SM (possibly also CKM- or chirality-suppressed) are a key tool to search for NP virtual particle effects. FCNC ∆ F = 2 transitions provided most stringent constraints on NP (e.g. technicolor) models. K 0 mixing in the framework of Here: parameters describing K 0 –¯ = � 5 i =1 c i (Λ /µ ) O i ( x µ ) + � 3 c i (Λ /µ ) ˜ H ∆ S =2 i =1 ˜ O i ( x µ ) , eff s α γ µ (1 − γ 5 ) d α ][¯ s β γ µ (1 − γ 5 ) d β ] O 1 = [¯ s α (1 − γ 5 ) d α ][¯ s β (1 − γ 5 ) d β ] O 2 = [¯ s α (1 − γ 5 ) d β ][¯ s β (1 − γ 5 ) d α ] O 3 = [¯ s α (1 − γ 5 ) d α ][¯ s β (1 + γ 5 ) d β ] O 4 = [¯ s α (1 − γ 5 ) d β ][¯ s β (1 + γ 5 ) d α ] O 5 = [¯ ˜ s α γ µ (1 + γ 5 ) d α ][¯ s β γ µ (1 + γ 5 ) d β ] O 1 = [¯ ˜ s α (1 + γ 5 ) d α ][¯ s β (1 + γ 5 ) d β ] O 2 = [¯ ˜ s α (1 + γ 5 ) d β ][¯ s β (1 + γ 5 ) d α ] O 3 = [¯ R. Frezzotti (on behalf of ETM Collaboration)

  3. K 0 oscillations Bag parameters and ratios thereof relevant for K 0 –¯ Only the parity-even part of O i ( ˜ O i ), i = 1 , 2 , 3 , 4 , 5, matters i.e. s α γ µ d α ][¯ s β γ µ d β ] + [¯ s α γ µ γ 5 d α ][¯ s β γ µ γ 5 d β ] O 1 = [¯ s α d α ][¯ s β d β ] + [¯ s α γ 5 d α ][¯ s β γ 5 d β ] O 2 = [¯ s α d β ][¯ s β d α ] + [¯ s α γ 5 d β ][¯ s β γ 5 d α ] O 3 = [¯ s α d α ][¯ s β d β ] − [¯ s α γ 5 d α ][¯ s β γ 5 d β ] O 4 = [¯ s α d β ][¯ s β d α ] − [¯ s α γ 5 d β ][¯ s β γ 5 d α ] O 5 = [¯ K - ¯ K matrix elements in units of vacuum saturation approximation � ¯ K 0 | O 1 ( µ ) | K 0 � ξ 1 B 1 ( µ ) m 2 K f 2 = K m 2 K f K � 2 � � ¯ K 0 | O i ( µ ) | K 0 � = ξ i B i ( µ ) i = 2 , 3 , 4 , 5 , m s ( µ ) + m d ( µ ) ξ i = (8 / 3 , − 5 / 3 , 1 / 3 , 2 , 2 / 3). For accurate determinations define R i = � ¯ K 0 | O i | K 0 � / � ¯ K 0 | O 1 | K 0 � i = 2 , 3 , 4 , 5 Pioneering quenched lattice QCD studies (with two a ’s each): ⋆ Donini et al., Phys.Lett. B470 (1999) 233 (clover Wilson fermions) ⋆ Babich at al., Phys.Rev. D74 (2006) 073009 (overlap fermions) R. Frezzotti (on behalf of ETM Collaboration)

  4. ETMC (arXiv:1207.1287) continuum N f = 2 results for B i , R i i 1 2 3 4 5 MS (3 GeV) 0.51(02) 0.51(02) 0.85(07) 0.82(04) 0.66(07) B i R i 1 -16.3(06) 5.5(04) 30.6(13) 8.2(05) RI-MOM (3 GeV) 0.50(02) 0.63(03) 1.07(09) 0.95(06) 0.75(09) B i R i 1 -15.4(06) 5.3(03) 26.9(12) 7.1(05) [ MS -scheme as in Buras, Misiak, Urban, Nucl.Phys. B586 (2000) 397] Quenching of s -quark: from comparison with N f = 2 + 1 results for B 1 ( a → 0) ⇒ systematic quenching error � 1 − 2%. Lattice artifacts are typically 5-10 times larger - depending on O i and action details ⇒ continuum limit crucial At one a ( ∼ 0 . 086 fm): N f = 2 + 1 results from RBC+UKQCD, arXiv:1206.5737 R. Frezzotti (on behalf of ETM Collaboration)

  5. Update of the SM+NP UTfit-’08 analysis [JHEP 0803 (2008) 049] ... ... in arXiv:1207.1287 – triggered by our unquenched B i -estimates • Input: experimental and/or phenomenological determinations of heavy meson masses, decay widths and leptonic decay constants, CKM parameters, heavy quark masses, B K , D , B -parameters, ... • NP in ∆ F = 2 processes via N f = 3 effective weak Hamiltonian � � 5 � + � 3 c i ˜ H ∆ F =2 i =1 c i O fd O fd eff ; LO = � i =1 ˜ f = s , c , b i i neglecting non-local contributions and subleading local ones. • SM+NP UTfit results provide bounds on C i (of P -even O i ) C i ∼ F i L i / Λ 2 , with F i the (complex) NP coupling and L i a loop factor specific to the interaction that generates O i . • | ǫ K | ∝ Im [ � K 0 |H ∆ F =2; P − even | ¯ K 0 � ] ⇒ bounds on Im [ C i ] eff ; LO R. Frezzotti (on behalf of ETM Collaboration)

  6. Switching on one C i at the time (with L i = F i = 1) yields ... 95% allowed same from lower bound same from range (GeV − 2 ) UTfit-2008 on Λ (TeV) UTfit-2008 Im C K [ − 2 . 8 , 2 . 6] · 10 − 15 [ − 4 . 4 , 2 . 8] · 10 − 15 1 . 9 · 10 4 1 . 5 · 10 4 1 Im C K [ − 1 . 6 , 1 . 8] · 10 − 17 [ − 5 . 1 , 9 . 3] · 10 − 17 24 · 10 4 10 · 10 4 2 [ − 6 . 7 , 5 . 9] · 10 − 17 [ − 3 . 1 , 1 . 7] · 10 − 16 12 · 10 4 5 . 7 · 10 4 Im C K 3 [ − 4 . 1 , 3 . 6] · 10 − 18 [ − 1 . 8 , 0 . 9] · 10 − 17 49 · 10 4 24 · 10 4 Im C K 4 [ − 1 . 2 , 1 . 1] · 10 − 17 [ − 5 . 2 , 2 . 8] · 10 − 17 29 · 10 4 14 · 10 4 Im C K 5 ⋆ models with tree-level FCNC from NP excluded up to 10 5 TeV ⋆ gluinos exchange in MSSM ⇒ L i > 1 ∼ α 2 s (Λ) ∼ 0 . 01 (Λ min = Λ tab min / 10) ⋆ loop-mediated weak FCNC ⇒ L i > 1 ∼ α 2 w (Λ) ∼ 10 − 3 (Λ min = Λ tab min / 30) ⋆ warped 5dim model with flavour hierarchy (RS scenario) F 4 = 2 m d m s ∗ v 2 , L 4 = ( g ∗ KKs ) 2 , Λ = M KKG ⇒ F 4 L 4 ∼ 10 − 8 (Λ min = Λ tab min / 10 4 ) Y 2 R. Frezzotti (on behalf of ETM Collaboration)

  7. ETMC lattice computation of (renormalized) � K | O i | ¯ K � ... ... based on a lattice regularization of the correlator � z �P K ( y ) O i ( x ) P ¯ K ( z ) � that guarantees � y ,� • continuum-like renormalization pattern of O i ’s • O( a ) improvement of physical quantities (no artefacts ∼ a 2 k +1 ) • numerical efficiency ( ⇒ data at several a ’s, a 2 → 0 feasible) Mixed Action setup of maximally twisted mass (Mtm) lattice QCD S = S Mtm + S OS val + S OS ghost , ψ = ( u sea , d sea ) & valence q f ’s sea � � x ¯ S Mtm = a 4 � 1 2 γ µ ( ∇ µ + ∇ ∗ µ ) − i γ 5 τ 3 r sea W cr + µ sea ψ ( x ) ψ ( x ) sea � � S OS val = a 4 � 1 2 γ µ ( ∇ µ + ∇ ∗ x , f ¯ q f ( x ) µ ) − i γ 5 r f W cr + µ f q f ( x ) W cr ≡ M cr − a 2 ∇ ∗ µ ∇ µ M cr ≡ optimal critical m 0 R. Frezzotti (on behalf of ETM Collaboration)

  8. MA setup of MtmLQCD (R.F., G.C. Rossi, JHEP10 (2004) 070) Two degenerate sea quarks with µ sea = µ ℓ & four valence quarks: q 1 , q 3 with µ 1 = µ 3 ≡ µ “ s ” , q 2 , q 4 with µ 2 = µ 4 ≡ µ ℓ and valence Wilson parameters r 1 = r 2 = r 3 = − r 4 , | r f | = 1 Evaluate two- and three-point correlators involving the fields P 12 = ¯ P 34 = ... , A 12 q 1 γ µ γ 5 q 2 , A 34 q 1 γ 5 q 2 , µ = ¯ µ = ... q β 3 γ µ q β q β 3 γ µ γ 5 q β O MA q α 1 γ µ q α q α 1 γ µ γ 5 q α �� � � �� 1[ ± ] = 2 [¯ 2 ][¯ 4 ] + [¯ 2 ][¯ 4 ] ± 2 ↔ 4 q β 3 q β q β 3 γ 5 q β O MA q α 1 q α q α 1 γ 5 q α �� � � �� 2[ ± ] = 2 [¯ 2 ][¯ 4 ] + [¯ 2 ][¯ 4 ] ± 2 ↔ 4 1 q β q β 1 γ 5 q β q β O MA q α 3 q α q α 3 γ 5 q α �� � � �� 3[ ± ] = 2 [¯ 2 ][¯ 4 ] + [¯ 2 ][¯ 4 ] ± 2 ↔ 4 O MA q α 1 q α q β 3 q β q α 1 γ 5 q α q β 3 γ 5 q β �� � � �� 4[ ± ] = 2 [¯ 2 ][¯ 4 ] − [¯ 2 ][¯ 4 ] ± 2 ↔ 4 q α 1 q β q β 3 q α q α 1 γ 5 q β q β 3 γ 5 q α O MA �� � � �� 5[ ± ] = 2 [¯ 2 ][¯ 4 ] − [¯ 2 ][¯ 4 ] ± 2 ↔ 4 in particular � a � 3 � x �P 43 2 O MA x , x 0 ) P 21 C i ( x 0 ) = i [+] ( � y 0 � , i = 1 , . . . , 5 � y 0 + T L R. Frezzotti (on behalf of ETM Collaboration)

  9. In such a MA setup one finds (JHEP10 (2004) 070, arXiv:1207.1287) • the op.s O MA i [+] renormalize as in the formal QCD: ( b ) O MA O MA       Z 11 0 0 0 0 1[+] 1[+] O MA O MA 0 Z 22 Z 23 0 0     2[+] 2[+]       O MA   O MA 0 0 0 = Z 32 Z 33     3[+]   3[+]       O MA 0 0 0 O MA Z 44 Z 45       4[+] 4[+]     0 0 0 Z 54 Z 55 O MA O MA 5[+] 5[+] [mass-independent Z ij related to plain Wilson 4-fermion op. RC’s] • the relevant quark bilinear operators renormalize according to [ P 12 / 34 ] = Z S / P [ P 12 / 34 ] ( b ) , [ A 12 / 34 ] = Z A / V [ A 12 / 34 ] ( b ) µ µ • if µ 1 , 3 = µ s and µ 2 , 4 = µ u / d the m.e. � P 43 | O MA i [+] | P 12 � extracted from the correlators with insertion of O MA i [+] as a → 0 approaches (with rate a 2 ) the continuum QCD m.e. � ¯ K 0 | O i | K 0 � R. Frezzotti (on behalf of ETM Collaboration)

  10. Lattice parameters for correlators at β = 3 . 80 , 3 . 90 and 4.05. β = 3 . 80, a ∼ 0 . 10 fm a − 4 ( L 3 × T ) a µ ℓ = a µ sea a µ “ s ” N stat 24 3 × 48 0.0080 0.0165, 0.0200, 0.0250 170 0.0110 “ “ 180 β = 3 . 90, a ∼ 0 . 09 fm 24 3 × 48 0.0040 0.0150, 0.0220, 0.0270 400 0.0064 “ “ 200 0.0085 “ “ 200 0.0100 “ “ 160 32 3 × 64 0.0030 “ 300 0.0040 “ “ 160 β = 4 . 05, a ∼ 0 . 07 fm 32 3 × 64 0.0030 0.0120, 0.0150, 0.0180 190 0.0060 “ “ 150 0.0080 “ “ 220 To improve signal-to-noise ratio: stochastic spatial-wall sources used for P 21 y 0 , P 43 y 0 + T / 2 and sum over spatial location of O i . R. Frezzotti (on behalf of ETM Collaboration)

Recommend


More recommend