Juan García-Bellido Galileo Galilei Institute Física Teórica UAM Florence, 2006 6th September 2006
Outline Reheating: Standard perturbative decay •Oscillating inflaton field •Perturbative decay rates •Reheating temperature Preheating: Very rich phenomenology •Parametric resonance and tachyonic inst. •Production massive part. + top. defects •EW baryogenesis & leptogenesis •Stochastic background gravitational waves •Primordial magnetic fields
Reheating
Inflaton oscillating at end of inflation & & H & φ + φ + φ = φ = Φ 2 ( ) ( ) sin 3 m 0 t t mt ( ) 1 1 ρ = Φ + = Φ 2 2 2 2 2 2 ( ) cos sin ( ) m t mt mt m t 2 2 ( ) 1 = Φ − = 2 2 2 2 ( ) cos sin p m t mt mt 0 2 like matter − ρ 3 ( ) ~ ( ) t a t φ − = Φ 2 3 ( ) ~ ( ) n t m a t φ − Φ 1 ( ) ~ t t
Inflaton coupled to rest of the universe 1 1 1 1 1 = ∂ φ − φ + ∂ χ − χ + ξχ 2 2 2 2 2 2 2 ( ) ( ) L m m R χ 2 2 2 2 2 1 + ψ γ µ ∂ + ψ − φ ψ ψ − χ φ − φχ 2 2 2 2 2 ( ) i m h g g v µ ψ 2 & & H & φ + φ + + Π φ = 2 ( ( )) 3 0 m w Π = Γ Im ( m ) optical theorem m φ & & & & φ + φ + Γ φ + φ = 2 ( ) phenom. 3 H t m 0 φ ( ) Φ 1 − Γ d t φ φ = ⇒ ρ = − Γ ρ 3 3 0 ( ) sin 2 t e mt a a φ φ φ t dt
Perturbative decay of inflaton ψ χ φ φ g 2 v h χ ψ ∑ ∑ Γ = Γ φ → χ χ + Γ φ → ψ ψ ( ) ( ) φ i i i i i i 4 2 2 m g i v h i Γ φ → χ χ = Γ φ → ψ ψ = ( ) ( ) π π i i i i 8 m 8 ⎛ ⎞ 2 4 2 h m g v ⎜ ⎟ − Γ ≡ < < = ∑ + < < 2 2 6 eff i , m h h 10 ⎜ ⎟ φ π eff i 2 ⎝ ⎠ 8 m
Perturbative reheating 2 Γ < < = < < initially 3 H m φ t − − τ = Γ < < = 1 1 inflaton lifetime age universe t U H φ φ Γ π 2 2 2 3 M φ = Γ ⇒ ρ = ≡ P 4 ( ) ( ) H t g T T φ π reh reh reh 8 30 ≅ Γ = × ≤ 14 11 . GeV GeV 0 1 2 10 10 T M h φ eff reh P 3 m Γ ⇒ 9 ~ ~ GeV T 10 grav reh 2 M P
Non-perturbative decay of inflaton 1 1 1 = Π + ∇ χ + χ 2 2 2 2 ( ) ( ) H m t χ χ 2 2 2 = + φ 2 2 2 2 ( ) ( ) m t m g t χ χ [ ] free = ∫ 3 r r d k r χ + i k x ˆ ˆ ( , ) ( ) . . quantum field t x f t a e h c r 2 π k / 3 2 k ( ) [ ] [ ] r r r r r r ′ ′ + ′ χ Π ˆ = δ − ⇒ = δ − 3 3 ˆ ˆ ˆ h ( , ), ( , ) ( ) , ( ) t x t x i x x a a k k r r χ ′ k k & & + ω = ω = + 2 2 2 2 ( ) , ( ) ( ) time dep f t f 0 t k m t χ k k k k 1 & ∗ = = , Re( ) Wronskian g i f f g k k k k 2
Particle production (Schrödinger) ψ n Time-dependent approximation in sudden potential ψ 0
χ Occupation number of field ∫ 3 1 d k = = ( ) | | ( ) n t 0 N 0 n t π k 3 ( ) V 2 ω 1 1 = + − k 2 2 ( ) | | | | n t f g ω k k k 2 2 2 k ′ ′ + − = ( cos ) Mathieu equation f A 2 q 2 z f 0 k k k + Φ 2 2 2 2 k m ( ) g t χ = + = , A 2 q q k 2 2 m 4 m µ µ = ⇒ > > mt 2 mt solution ( ) ( ) ( ) ~ f t e p z n t e 1 k k k k
k Band structure µ k
resonance Narrow
resonance Broad
Broad resonance φ ( t )
Expanding universe
Lattice simulations n Large occupation numbers k classical fields equipartition T eff ~ n k k k
Preheating Very rich phenomenology after inflation •Non-thermal production of particles (CDM) •Production of topological defects •EW baryogenesis & leptogenesis •Production of gravitational waves •Production of primordial magnetic fields •etc.
φ χ Hybrid Inflation ) χ , φ ( V
χ ∈ ( 1 ) U String production @ end inflation
JGB, Linde PRD57, 6075 (1998) PRL87, 011601 (2001) Felder, JGB, Kofman, PRD64, 123517 (2001) Linde, Tkachev JGB, Garcia-Perez, PRD67, 103501 (2003) Gonzalez-Arroyo
Tachyonic Preheating Spinodal growth of long wave Higgs modes •At the end of Hybrid Inflation •Higgs couples to gauge fields •Strong production of fermions
The Higgs Evolution ⎛ ⎞ χ 2 ⎜ ⎟ = − ≈ − − 2 2 3 ( ) 1 2 m m Vm t t ⎜ ⎟ φ χ c 2 ⎝ ⎠ c = − − = − τ 3 2 ( ) M t t M c [ ] ∫ 1 + + = τ τ + − τ τ τ 3 2 ( ) ( ) ( ) ( ) ( ) H d k p p k y y k k k k 2 [ ] ′ τ τ = δ − 3 h ( ), ( ) ( ) y p i k k ′ k k
Higgs Quantum Field ∗ + τ = τ τ + τ τ ( ) ( ) ( ) ( ) ( ) y f a f a − k k k 0 k k 0 [ ] ∗ + τ = − τ τ − τ τ ( ) ( ) ( ) ( ) ( ) p i g a g a − k k k 0 k k 0 ′ = ′ ′ + − τ = 2 g i f ( ) f k f 0 k k k k ∗ τ − τ ( ) ( ) 1 2 g iF Ω τ = = k k ( ) ∗ τ τ k 2 ( ) | ( ) | f 2 f k k ∗ τ = ( ) Im( ) F f g k k k
Quantum Initial Conditions 2 − ∀ τ τ = ⇒ Ψ τ = 0 | | k y ( ) , ( ) k a 0 0 N e k k 0 0 0 0 0 Unitary Evolution 1 2 − Ω τ τ = τ ⇒ Ψ τ = 0 ( ) | | y , , ( ) 0 U 0 e k k 0 0 π | | f k Occupation number of mode k 1 k 1 τ = τ τ τ = + − 2 2 ( ) , ( ) , | | | | n 0 N 0 g f 0 k k k k 2 k 2 2
1 > Quantum to Classical Transition > | ) τ ( gaussian k F | ) ⇒ p , y ( 0 G ≈ τ , 0 ) p ˆ , y ˆ ( G τ , 0
Quantum to Classical Transition < τ For longwave modes k 2 − τ τ = τ = τ ( ) 3 2 2 B k ( , ) | ( ) | ( ) P k k f A k e app k A τ / 3 2 4 τ = τ ≈ 2 0 ( ) ( ) A A Bi e 3 0 π τ τ = τ ( ) B 2
Power spectrum of longwave modes
Lattice Simulations Quantum averages = Ensemble averages Initial conditions: Highly occupied modes 1 2 − Ω τ τ = τ ⇒ Ψ τ = 0 ( ) | | y , , ( ) 0 U 0 e k k 0 0 π | | f k φ 2 | | φ θ − k 2 | | d d φ φ θ = 2 | | f k k (| |) | | P d d e k Ψ π k k k 2 | | f 2 k
Higgs field and Inflaton field Histograms of
Hybrid evolution
High peaks of Higgs field
High peaks and mean of Higgs field
PRD60,123504(1999) J. G.-B. Dmitri Grigoriev Alex Kusenko GGI 2006, Florence 6 th September, 2006 Misha Shaposhnikov
Sakharov conditions •B violation •C and CP violation •Out of equilibrium
ρ log Evolution of Universe GUT EW QGP now ? Λ inflation radiation matter log a
The SU(2) Higgs-Inflaton model 1 µν + µ = − + Φ Φ a [( ) ] L F F Tr D D µν µ a 4 1 + ∂ χ − Φ χ 2 ( ) ( , ) V i µ = ∂ − τ a 2 D g A µ µ µ w a 2 = ∂ − ∂ + ε a a a abc b c F A A g A A µν µ ν ν µ µ ν w 1 1 Φ + Φ = φ + φ φ ≡ φ 2 a 2 [ ] ( ) Tr 0 a 2 2 λ 2 g 1 φ χ = φ − + φ χ + χ 2 2 2 2 2 2 ( , ) ( ) V v m 4 2 2
Chern-Simons Number t ∫ i ∫ 2 ~ g µν ∆ = 3 w [ ] N dt d x Tr F F µν π CS 2 16 t t ∫ t i ∫ 1 ≡ 3 ( , ) dt d x Q x t π 2 16 t = ∫ 1 d Γ Γ ≡ ∆ 2 ( ) ( ) I mt mdt t ( ) ( ) t N t CS 4 Vm dt t i − = ± ⋅ 5 ( ) ( . . ) I 45 12 07 0 64 10
Chern-Simons Charge ( , ) Q x t
Chern-Simons Charge ( , ) Q x t
Peak in Chern-Simons Charge
∆ Sphaleron Production 2 N CS
∆ Sphaleron Production 2 N CS E sph ∆ − N 1 0 1 CS
Cold EW Baryogenesis (I) µ = µ ψ γ ψ Baryonic current j L L 3 µ µ ∂ = ∂ ≡ ( , ) j j Q x t µ µ π B L 2 16 Chiral anomaly ⇒ ∆ = ∆ = ∆ B L 3 N CS + Φ Φ 2 ~ 3 g µν = δ CP violation L w F F µν π CP CP 2 2 M 16 new
CS induces a bias N ∆ 1 eff µ 0 sph E CP violation 1 −
CS induces a bias N ∆ 1 eff µ 0 sph E CP violation 1 −
Cold EW Baryogenesis (II) δ d + µ = Φ Φ Effective potential CP eff 2 M dt new Γ d = µ − Γ sph Boltzman equation n n eff B B B dt T eff 2 n v − − ⇒ = × δ = δ 6 8 B 2 10 10 CP CP 2 s M new
EW Symmetry Breaking can lead to the production of baryons via sphaleron production at tachyonic preheating after hybrid inflation The right amount of baryons depends on CP violation param.
Recommend
More recommend