joint svbrdf recovery and synthesis from a single image
play

Joint SVBRDF Recovery and Synthesis From a Single Image using an - PowerPoint PPT Presentation

EGSR 2020 Joint SVBRDF Recovery and Synthesis From a Single Image using an Unsupervised Generative Adversarial Network Yezi Zhao 1 , Beibei Wang 2 , Yanning Xu 1 , Zheng Zeng 1 , Lu Wang 1 and Nicolas Holzschuch 3 1 School of Software, Shandong


  1. EGSR 2020 Joint SVBRDF Recovery and Synthesis From a Single Image using an Unsupervised Generative Adversarial Network Yezi Zhao 1 , Beibei Wang 2 , Yanning Xu 1 , Zheng Zeng 1 , Lu Wang 1 and Nicolas Holzschuch 3 1 School of Software, Shandong University 2 School of Computer Science and Engineering, Nanjing University of Science and Technology 3 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK EGSR 2020 1

  2. Motivation normal diffuse roughness specular Substance by Adobe EGSR 2020 2

  3. Our Goal A lightweight method for recovering real-world material normal diffuse roughness specular EGSR 2020 3

  4. State of the art normal diffuse glossiness specular Aittala et al., SIGGRAPH 2016 Reflectance Modeling by Neural Texture Synthesis normal diffuse specular Li et al., SIGGRAPH 2017 Modeling surface appearance from a single photograph using self-augmented convolutional neural networks normal diffuse roughness specular Deschaintre et al., SIGGRAPH 2018 Single-Image SVBRDF Capture with a Rendering-Aware Deep Network EGSR 2020 4

  5. State of the art normal diffuse glossiness specular Aittala et al., SIGGRAPH 2016 Reflectance Modeling by Neural Texture Synthesis normal diffuse specular Li et al., SIGGRAPH 2017 Modeling surface appearance from a single photograph using self-augmented convolutional neural networks normal diffuse roughness specular Deschaintre et al., SIGGRAPH 2018 Single-Image SVBRDF Capture with a Rendering-Aware Deep Network EGSR 2020 5

  6. State of the art normal diffuse glossiness specular Aittala et al., SIGGRAPH 2016 Reflectance Modeling by Neural Texture Synthesis normal diffuse specular Li et al., SIGGRAPH 2017 Modeling surface appearance from a single photograph using self-augmented convolutional neural networks normal diffuse roughness specular Deschaintre et al., SIGGRAPH 2018 Single-Image SVBRDF Capture with a Rendering-Aware Deep Network EGSR 2020 6

  7. State of the art normal diffuse glossiness specular Aittala et al., SIGGRAPH 2016 Reflectance Modeling by Neural Texture Synthesis normal diffuse specular Li et al., SIGGRAPH 2017 Modeling surface appearance from a single photograph using self-augmented convolutional neural networks normal diffuse roughness specular Deschaintre et al., SIGGRAPH 2018 Single-Image SVBRDF Capture with a Rendering-Aware Deep Network EGSR 2020 7

  8. State of the art normal diffuse glossiness specular Aittala et al., SIGGRAPH 2016 Reflectance Modeling by Neural Texture Synthesis normal diffuse specular Low-resolution Li et al., SIGGRAPH 2017 Modeling surface appearance from a single photograph using self-augmented convolutional neural networks normal diffuse roughness specular Deschaintre et al., SIGGRAPH 2018 Single-Image SVBRDF Capture with a Rendering-Aware Deep Network EGSR 2020 8

  9. State of the art Gao et al., SIGGRAPH 2019 … … Deep Inverse Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number of Images input normal diffuse roughness specular EGSR 2020 9

  10. State of the art Gao et al., SIGGRAPH 2019 … … Deep Inverse Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number of Images input Rely on a plausible starting point of optimizing normal diffuse roughness specular EGSR 2020 10

  11. State of the art Zhou et al., SIGGRAPH 2018 Non-stationary texture synthesis by adversarial expansion Synthesize [Zhou et al. 2018] EGSR 2020 11

  12. State of the art Zhou et al., SIGGRAPH 2018 Non-stationary texture synthesis by adversarial expansion Zoom-in Synthesize Separately [Zhou et al. 2018] Synthesize Separately [Zhou et al. 2018] EGSR 2020 12

  13. State of the art Zhou et al., SIGGRAPH 2018 Non-stationary texture synthesis by adversarial expansion Zoom-in Synthesisze Seperatly [Zhou et al. 2018] Inconsistency between SVBRDF maps Synthesisze Seperatly [Zhou et al. 2018] EGSR 2020 13

  14. Method overview Reference normal diffuse Our method Render Captured image specular roughness EGSR 2020 14

  15. Imaging setup 𝑦 𝑦 𝑑 Imaging setup Captured image EGSR 2020 15

  16. Generator Input Generator SVBRDF maps Discriminator Re-render Generative Adversarial Network (GAN) EGSR 2020 16

  17. Generator 𝑦 Generator SVBRDF maps Discriminator Captured image EGSR 2020 17

  18. Generator 𝑦 Generator SVBRDF maps Discriminator Captured image EGSR 2020 18

  19. Generator 𝑦 Generator SVBRDF maps Discriminator Captured image EGSR 2020 19

  20. Generator 𝑦 SVBRDF maps Discriminator Captured image EGSR 2020 20

  21. Generator Untrained encoder Visualization of the first 4 layers latent vector from encoder EGSR 2020 21

  22. Generator Two decoders EGSR 2020 22

  23. Discriminator “Real data” Discriminator “Fake data” EGSR 2020 23

  24. Loss function EGSR 2020 24

  25. Guessed diffuse map Guessed diffuse map Input image Computed as in [AAL16] [AAL16] Aittala et al. Reflectance modeling by neural texture synthesis. EGSR 2020 25

  26. Loss function L1 loss Adversarial loss Guessed Generated Tile 𝑦 Re-render 𝑧 diffuse diffuse Discriminator( , ) — 1 EGSR 2020 26

  27. Loss function L1 loss Adversarial loss Tile 𝑦 Re-render 𝑧 Tile 𝑦 Re-render 𝑧 Discriminator( , ) — 1 EGSR 2020 27

  28. Loss function Input Diffuse Input Diffuse Highlights Highlights Highlights EGSR 2020 28

  29. Results Input image : 1632 × 1224 SVBRDF & Render: 3264 × 2448 EGSR 2020 29

  30. Results Input image : 1632 × 1224 SVBRDF & Render: 3264 × 2448 EGSR 2020 30

  31. Results Input image : 1632 × 1224 SVBRDF & Render: 3264 × 2448 EGSR 2020 31

  32. Results × 1 × 2 × 4 × 8 EGSR 2020 32

  33. Results 512 × 512 Input 1024 × 1024 SVBRDF maps normal diffuse roughness specular 1024 × 1024 Render EGSR 2020 33

  34. Results 512 × 512 Input 1024 × 1024 SVBRDF maps normal diffuse roughness specular 1024 × 1024 Render EGSR 2020 34

  35. Results normal specular diffuse roughness 2048 × 2048 SVBRDF maps EGSR 2020 35

  36. Results normal specular diffuse roughness 2048 × 2048 SVBRDF maps 2048 × 2048 Render (omit) EGSR 2020 36

  37. Results specular roughness normal diffuse 4096 × 4096 SVBRDF maps EGSR 2020 37

  38. Results …… Captured images Rendered with Arnold EGSR 2020 38

  39. Network Analysis – loss function EGSR 2020 39

  40. Network Analysis – generator EGSR 2020 40

  41. Limitation • Our method failed to synthesis textures when the input image has a global structure. EGSR 2020 41

  42. Limitation • Our method failed to synthesis textures when the input image has a global structure. • Each input for our method requires individual training, which costs about 3 hours. EGSR 2020 42

  43. Conclusion and Future work Conclusion • An unsupervised GAN for joint SVBRDF recovery and synthesis without a large training dataset. • A two-stream generator to enhance specular component. • A novel joint loss function for high-quality novel view renderings. Future work • Introduce existing knowledge about the material. EGSR 2020 43

  44. EGSR 2020 Thank you for your attention The code is available: https://github.com/mengshu1996/SVBRDF-GAN Yezi Zhao, Beibei Wang, Yanning Xu, Zheng Zeng, Lu Wang and Nicolas Holzschuch EGSR 2020 44

Recommend


More recommend