joint physics analysis center jpac
play

Joint Physics Analysis Center (JPAC) The Joint Physics Analysis - PowerPoint PPT Presentation

Amplitude analysis of / 0 0 Alessandro Pilloni Joint Physics Analysis Center Krakow, June 6 th , 2016 Joint Physics Analysis Center (JPAC) The Joint Physics Analysis Center (JPAC) formed in October 2013 We


  1. Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 Alessandro Pilloni Joint Physics Analysis Center Krakow, June 6 th , 2016

  2. Joint Physics Analysis Center (JPAC) โ€ข The Joint Physics Analysis Center (JPAC) formed in October 2013 โ€ข We support physics analysis of experimental data for accelerator facilities (JLab, COMPASS, ... ) http://www.indiana.edu/jpac/ Review of JPAC Talks โ€ข Andrew Jackura (Thursday Parallel B) โ€ข Vladyszlav Pauk (Thursday Parallel B) โ€ข Adam Szczepaniak (Friday Plenary) โ€ข Emilie Passemar (Friday Parallel A) โ€ข Vincent Mathieu (Poster Session) 2

  3. ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 BESIII published in 2015 a partial wave analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 BESIII PRD92, 052003 Bose symmetry and charge conjugation force the dipion to have ๐พ ๐‘„๐ท ๐ฝ ๐ป = even ++ 0 + c J/ y This is a gluon-rich process, expected to be one of the G golden channels for the search of the scalar glueball c (see F. Giacosa talk) A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 3

  4. Partial Waves intensities A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 4

  5. Partial Waves intensities ๐‘” 0 1370 ? ๐‘” 0 1710 ? Some structures appear in ๐‘” 0 2020 ? the scalar channel ๐œ? ๐‘” 0 980 ? They do not exhibit a clear Breit-Wigner form Given the peculiar ๐‘” 2 (1270) interference pattern, one must give a particular care in writing an amplitude with the correct properties. The tensor channel is clearly ๐‘” 2 (1270) dominated by the lowest ๐‘” 2 (1270) A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 5

  6. S -Matrix principles โ€ข Analyticity : the amplitude can be analytically continued for complex values of ๐‘ก, ๐‘ข no singularities in the Ist Riemann sheet (out of the real axis) โ€ข Crossing symmetry : different physical processes are described by the same analytic function ๐›ฟ ๐พ/๐œ” ๐œŒ 0 ๐œŒ 0 ๐พ/๐œ” ๐›ฟ ๐œŒ 0 ๐œŒ 0 โ€ข Unitarity : the production is related to the ๐œŒ๐œŒ scattering ๐พ/๐œ” ๐œŒ 0 ๐œŒ 0 ๐พ/๐œ” ๐œŒ 0 ๐œŒ 0 = ร— ๐›ฟ ๐œŒ 0 ๐›ฟ ๐œŒ 0 ๐œŒ 0 ๐œŒ 0 A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 6

  7. Kinematical singularities External particles have spin, so kinematical singularities appear They have to be removed before writing dispersion relations A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 7

  8. The model/1 We start approximating the problem to 1 channel, i.e. neglecting inelasticities. Unitarity and dispersion relations allow us to write the solution in terms of the Omnรจs function Only RHC Only LHC Need a model Need a model A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 8

  9. The model/2 The scattering phase can be expressed in terms of a K-matrix parametrization ๐œ€ = ๐œ€ ๐œŒ + ๐œ€ ๐‘† R K-matrix poles Adler zero Background terms describes the ๐œ region (effective LHC) 1 ๐ต ๐œŒ๐œŒ = ๐ป ๐œŒ is the Chew-Mandelstam factor (dispersed phase space) ๐ฟ โˆ’1 โˆ’ ๐ป ๐œŒ ๐ฝ๐‘› ๐ป ๐œŒ = ๐œ A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 9

  10. Left hand cut parametrization ๐œŒ 0 ๐พ/๐œ” ๐œ•, ๐œ โ€ฆ ๐œŒ 0 ๐›ฟ Since for the ๐พ/๐œ” the light exchanges have little impact on the production, one can neglect the backreaction of the denominator in the ๐‘ค . The most relevant exchange in data is the ๐œ• , so we use as ๐‘ค the partial wave projection of a BW vector meson A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 10

  11. Fit (preliminary) This is a preliminary version of the fit, just to check if the model is elastic enough to fit the S-wave data The fit qualitatively reproduces the ๐œ region and the higher resonances, but as expected fails to describe the ๐‘” 0 (980) region: an effective ๐ฟ ๐ฟ threshold has to be included A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 11

  12. Hunting for poles Our parametrization is fully analytical, so it allows us to continue the function onto the unphysical Riemann sheet, and looking for poles For example, with this preliminary fit we get ๐‘ 1 = 1362 MeV ๐‘ 2 = 1810 MeV ฮ“ 1 = 150 MeV ฮ“ 2 = 55 MeV These look fairly close to the ๐‘” 0 (1370) and ๐‘” 0 (1710) . The improving of the fit will lead to a more precise determination of these two poles, and likely to the finding of the higher โˆผ 2.2 GeV state. A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 12

  13. Next steps โ€ข No proper coupled channel analysis can be performed without ๐พ/๐œ” โ†’ ๐›ฟ ๐ฟ ๐ฟ data; still, an effective threshold can be introduced to describe the ๐‘” 0 (980) region โ€ข One can use founded statistical methods to constrain the actual number of poles; this can give a robust answer to whether the three ๐‘” 0 1370 , ๐‘” 0 1500 , ๐‘” 0 (1710) actually show up in this channel โ€ข The combined fit of intensities and phases of the 0 ++ and 2 ++ can constrain even more the scalar sector A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 13

  14. Conclusions โ€ข The decay ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ๐œŒ is a gluon-rich process, particularly interesting for the search and identification of the scalar glueball. โ€ข The S-wave exhibits clear structures, but the interference pattern and the shape of the peaks do not allow for simple Breit-Wigner fits. โ€ข A more robust dispersive analysis is needed for extracting the poles and the couplings of the scalar states. โ€ข The formalism developed is tuned on this system, but can be generalized to other ๐œŒ๐œŒ systems, particularly in the region > 1 GeV A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 14

  15. BACKUP

  16. Pentaquarks... and so on (JLab) (JLab) (Mainz) (Bonn) (Beijing) (Cal. St.) (UNAM) In this, the activity of JPAC plays a crucial role 16 A. Pilloni โ€“ Modeling new exotic states

  17. Phases A. Pilloni โ€“ Amplitude analysis of ๐พ/๐œ” โ†’ ๐›ฟ ๐œŒ 0 ๐œŒ 0 17

Recommend


More recommend