jet fragmentation and fractal observables
play

Jet Fragmentation and Fractal Observables Ben Elder Massachusetts - PowerPoint PPT Presentation

Jet Fragmentation and Fractal Observables Ben Elder Massachusetts Institute of Technology July 17, 2017 Based on work with: Massimiliano Procura, Jesse Thaler, Wouter Waalewijn, and Kevin Zhou Ben Elder (MIT) Jet Fragmentation and Fractal


  1. Jet Fragmentation and Fractal Observables Ben Elder Massachusetts Institute of Technology July 17, 2017 Based on work with: Massimiliano Procura, Jesse Thaler, Wouter Waalewijn, and Kevin Zhou Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 1 / 20

  2. Fragmentation Functions Fragmentation function (FF) D h i ( x , µ ): ◮ Probability of hadron h resulting from parton π + i , carrying momentum fraction x ◮ Non-perturbative (must be extracted from data) ◮ Process independent ◮ Perturbative RG evolution Jet substructure: typically don’t care about individual identified hadron π − ρ + π 0 Today’s talk: subsets of jet particles → π + generalized fragmentation functions (GFFs) π 0 GFF F i ( x , µ ) describes distribution of observable x among some subset S of jet particles Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 2 / 20

  3. Collinear Unsafe Observables z i = p T , i � Q i z κ p D � z 2 Jet Charge = T = i i p T , jet i ∈ jet i ∈ jet Phys.Rev. D93 (2016) no.5, 052003 following Krohn, Shwartz, Lin, Waalewijn:1209.2421 CMS Collab.-CMS-PAS-JME-13-002 Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 3 / 20

  4. RG Evolution: Standard Fragmentation Functions Leading order evolution → DGLAP equations Follow evolution on one path → linear � 1 µ d i ( x , µ ) = 1 d z α s ( µ ) � d µ D h P i → j , k ( z , α s ) D h j ( x / z , µ ) 2 π z x j , k D h q ( x ) Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 4 / 20

  5. RG Evolution: Generalized Fragmentation Functions F i ( x , µ ) carries information about all particles in S Leading order evolution follows evolution along all paths → nonlinear NLO evolution involves 1 → 3 splittings µ d d µ F i ( x , µ ) = 1 d z α s ( µ ) � � � P i → j , k ( z , α s ) d x 1 d x 2 F j ( x 1 , µ ) F k ( x 2 , µ ) 2 π j , k × δ ( x − ˆ x ( z , x 1 , x 2 )) F h q ( x 3 ) F h g ( x 5 ) F h g ( x 4 ) ¯ Jet Charge: ˆ x = z κ x 1 + (1 − z ) κ x 2 p D x = z 2 x 1 + (1 − z ) 2 x 2 F h q ( x 2 ) T : ˆ F h q ( x 1 ) F h g ( x 6 ) Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 5 / 20

  6. RG Evolution: Comparison to Parton Showers Gluon GFF, Weighted Jet Charge and p D T pp : µ = p T R , z i = p T , i e + e − : µ = ER , z i = E i ; p T , jet E jet envelopes: Pythia PS, Vincia PS, Dire PS; E , R combinations Evolution: κ = 1 Evolution: κ = 2 6 PS: µ = 100 GeV PS: µ = 100 GeV 100 GeV → 4 TeV 20 100 GeV → 4 TeV PS: µ = 4 TeV PS: µ = 4 TeV 4 15 Gluon GFF Gluon GFF F g F g Jet Charge All Particles 10 2 5 0 0 − 0 . 5 0 . 0 0 . 5 0 . 0 0 . 2 0 . 4 x x � Q i z κ � z 2 p D Jet Charge = T = i i i ∈ jet i ∈ jet Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 6 / 20

  7. Fractal Observables Construct observable with structure of (leading order) evolution equation Define clustering tree, final state jet particles = leaves of tree Assign weights to jet constituents (non-kinematic quantum numbers) Recursively combine from bottom to top of tree using recursion relation ˆ x ( z , x 1 , x 2 ) x p p 2 3 + + p E L p 1 4 z = E L + E R x 12 x 34 p 2 p 4 p 1 p 3 w 1 w 2 w 3 w 4 Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 7 / 20

  8. Fractal Observables: Familiar Examples Weighted jet charge: ◮ w i = Q i ◮ ˆ x = z κ x 1 + (1 − z ) κ x 2 ◮ x = � i ∈ jet Q i z κ i p D T : ◮ w i = 1 ◮ ˆ x = z 2 x 1 + (1 − z ) 2 x 2 ◮ x = � i ∈ jet z 2 i These recursion relations are associative → independent of clustering tree Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 8 / 20

  9. Fractal Observables: Non-Associative Example x = z κ x 1 + (1 − z ) κ x 2 + (4 z (1 − z )) κ/ 2 ˆ w i = 0 E 3 + E 4 E 1 + E 2 E 2 E 4 E 1 E 3 w 1 = 0 w 2 = 0 w 3 = 0 w 4 = 0 Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 9 / 20

  10. Fractal Observables: Non-Associative Example x = z κ x 1 + (1 − z ) κ x 2 + (4 z (1 − z )) κ/ 2 ˆ w i = 0 E 3 + E 4 E 1 + E 2 �� κ/ 2 �� κ/ 2 � � � � E 1 E 1 E 3 E 3 x 1 = 4 1 − x 2 = 4 1 − E 1 + E 2 E 1 + E 2 E 3 + E 4 E 3 + E 4 E 2 E 4 E 1 E 3 Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 10 / 20

  11. Fractal Observables: Non-Associative Example x = z κ x 1 + (1 − z ) κ x 2 + (4 z (1 − z )) κ/ 2 ˆ w i = 0 � κ � κ �� κ/ 2 � E 1 + E 2 � 1 − E 1 + E 2 � 4 E 1 + E 2 � 1 − E 1 + E 2 x = x 1 + x 2 + E jet E jet E jet E jet E 3 + E 4 E 1 + E 2 E 2 E 4 E 1 E 3 Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 11 / 20

  12. Fractal Observables: Node Definition � κ/ 2 � E L E R � ⇒ x = 2(1 − p D x = x A + x B + x C = κ = 2 = T ) E 2 jet nodes � κ/ 2 � ( E 1 + E 2 )( E 3 + E 4 ) x B = E 2 jet E 3 + E 4 E 1 + E 2 � κ/ 2 � κ/ 2 � � E 1 E 2 E 3 E 4 x A = x C = E 2 E 2 jet jet E 2 E 4 E 1 E 3 Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 12 / 20

  13. Fractal Observables: Tree Dependence Compute fractal observable on jet ensemble from Vincia p = − 1 → anti − k T anti- k T jets with R = 0 . 6 p = 0 → C/A Recluster into fractal observable tree p = 1 → k T Non-associative recursion relation → tree dependence κ = 1 κ = 2 κ = 4 8 10 . 0 Gluon GFF Gluon GFF Gluon GFF 1 . 00 p = − 1 p = − 1 Vincia Vincia Vincia p = 0 p = 0 µ = 100 GeV µ = 100 GeV µ = 100 GeV 6 7 . 5 p = 1 p = 1 0 . 75 p = − 1 p = 0 F g F g F g 4 5 . 0 p = 1 0 . 50 2(1 − p D T ) 2 2 . 5 0 . 25 0 . 00 0 0 . 0 0 5 10 1 . 0 1 . 5 2 . 0 0 . 0 0 . 5 1 . 0 x x x Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 13 / 20

  14. Fractal Observables: RG Evolution Gluon GFF, C/A Trees κ = 1 κ = 2 κ = 4 4 PS: µ = 100 GeV PS: µ = 100 GeV PS: µ = 100 GeV 1 . 00 100 GeV → 4 TeV 100 GeV → 4 TeV 100 GeV → 4 TeV 10 3 PS: µ = 4 TeV PS: µ = 4 TeV PS: µ = 4 TeV Gluon GFF Gluon GFF Gluon GFF 0 . 75 p=0 p=0 p=0 F g F g F g 2 0 . 50 5 1 0 . 25 0 0 0 . 00 0 5 10 1 . 5 2 . 0 0 . 0 0 . 5 1 . 0 1 . 5 x x x x ( z , x 1 , x 2 ) = z κ x 1 + (1 − z ) κ x 2 + (4 z (1 − z )) κ/ 2 ˆ Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 14 / 20

  15. Fractal Observables: RG Evolution Gluon GFF, κ = 1 anti- k T k T C/A 0 . 6 PS: µ = 100 GeV PS: µ = 100 GeV PS: µ = 100 GeV 1 . 00 1 . 00 100 GeV → 4 TeV 100 GeV → 4 TeV 100 GeV → 4 TeV PS: µ = 4 TeV PS: µ = 4 TeV PS: µ = 4 TeV 0 . 4 Gluon GFF Gluon GFF Gluon GFF 0 . 75 0 . 75 κ = 1 κ = 1 κ = 1 F g F g F g 0 . 50 0 . 50 0 . 2 0 . 25 0 . 25 0 . 0 0 . 00 0 . 00 0 10 20 0 5 10 0 5 10 x x x µ d d µ F i ( x , µ ) = 1 � d z α s ( µ ) � � P i → j , k ( z , α s ) d x 1 d x 2 F j ( x 1 , µ ) F k ( x 2 , µ ) 2 π j , k × δ ( x − zx 1 − (1 − z ) x 2 − (4 z (1 − z )) 1 / 2 ) Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 15 / 20

  16. Quark/Gluon Discrimination: Distributions Multiple Partons, C/A Trees κ = 1 κ = 2 κ = 4 2 . 5 Gluon GFF Gluon GFF Gluon GFF 0 . 6 10 � Quark � GFF � Quark � GFF � Quark � GFF Down GFF Down GFF 2 . 0 Down GFF 8 Bottom GFF Bottom GFF Bottom GFF 0 . 4 1 . 5 F i F i F i Vincia Vincia Vincia 6 µ = 4 TeV µ = 4 TeV µ = 4 TeV p = 0 p = 0 1 . 0 p = 0 4 0 . 2 0 . 5 2 0 . 0 0 . 0 0 2 4 6 8 10 1 . 0 1 . 5 2 . 0 0 . 0 0 . 5 1 . 0 1 . 5 x x x ← p D better (more like multiplicity) T → worse (less like multiplicity) Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 16 / 20

  17. Quark/Gluon Discrimination: ROC Curves Node Product ROC Curves 1 . 0 Vincia , µ = 4 TeV p = 0 0 . 8 κ = 1 Gluon Mistag Rate κ = 2 , ( p D T ) 0 . 6 κ = 4 0 . 4 0 . 2 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 Quark Efficiency Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 17 / 20

  18. Soft-Drop Multiplicity More about this in Chris Frye’s talk tomorrow at 4pm. C-unsafe in β → 0 limit Another application of GFFs Recursion relation:  x 2 0 ≤ z < z cut    x 2 + f ( z ) z cut ≤ z ≤ 1 / 2  x ( z , x 1 , x 2 ) = ˆ x 1 + f ( z ) 1 / 2 ≤ z ≤ 1 − z cut     x 1 1 − z cut < z ≤ 1 Frye, Larkoski, Thaler, Zhou: ArXiv:1704.06266 Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 18 / 20

  19. Conclusion FFs → cross sections with single identified hadron GFFs → cross sections of fractal observables with subsets of final state particles GFFs are non-perturbative Nonlinear, DGLAP-like perturbative evolution Fractal observables at the LHC: jet charge and p D T Non-associative generalizations show promise for quark/gluon discrimination Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 19 / 20

  20. Thank You Ben Elder (MIT) Jet Fragmentation and Fractal Observables July 17, 2017 20 / 20

Recommend


More recommend