Jet Break in M87: Fundamental Property in AGN Jets Masa Nakamura (ASIAA, Taiwan) Institute for Theoretical Physics Seminar, Goethe University, Frankfurt, Germany, 12/04/2015
Towards(the(100 th( Anniversary(of(the(Discovery(of(Cosmic(Jets M87 Workshop May 23-27 2016, ASIAA, Taipei Web.: http://events.asiaa.sinica.edu.tw/workshop/20160523/index.php � Contact: m87ws2016@asiaa.sinica.edu.tw Image courtesy (left: Francisco Diez, middle: J.-C. Algaba, right: Greenland telescope) TOPICS Registration & Abstract Submission ( - 2016/02/15) • SMBHs; mass, spin, and imaging of BH silhouettes • BH accretion flows; from Bondi radius to the horizon • BH Jets; from the horizon to galactic scale • Co-evolution of galaxy and black hole: AGN feedback • High energy emissions in LLAGNs; their sites and mechanisms SOC : P. Ho (ASIAA, Chair) � Invited Speakers (*TBD): � L. Ho (KIAA, Vice-chair, keynote speaker) � K. Asada (ASIAA) , J. Biretta (STScI) , G. Bower (ASIAA) , A. Broderick R. Blandford (Stanford, keynote speaker) � (U. Waterloo) , E. Churazov (MPA) , S. Doeleman (MIT Haystack) , *A. Doi A. Fabian (IoA, Keynote speaker) � (JAXA) , J. Hawley (U. Virginia) , A. Levinson (Tel Aviv U.) , B. McNamara R. Narayan (CfA, Keynote speaker) � (U. Waterloo) , H. Li (LANL) , *D. Meier (Caltech) , S. Mineshige (Kyoto U.) , K. Asada (ASIAA, Secretary) � M. Mo ś cibrodzka (Radboud U.) , M. Nakamura (ASIAA) , E. Perlman M. Nakamura (ASIAA, Secretary) � (FIT) , W. Potter (U. Oxford) , Ł . Stawarz (Jagiellonian U.) , A. Tchekhovskoy (UCB) , *C. Walker (NRAO) , J. Walsh (Texas A&M U.)
Outline • Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation � • MHD Jet global structure and dynamics under the BH gravitational influence and beyond � • MAD in Action; how large is the BH spin? � • Lessons learned from M87; “ jet break ” in AGNs may be norm in the BH-galaxy co-evolution? � • Summary
Puzzle Has Remained Unsolved During decades Distance from the nucleus: z (arcsec) Junor+ (1999), Nature 10 -3 10 -2 10 -1 10 1 1 8 N2 L HST-1 D E F AB C Reid et al. (1989) Junor & Biretta (1995) Biretta et al. (1995) Biretta et al. (1999) 6 Cheung et al. (2007) Apparent speed ( V / c ) Kovalev et al. (2007) 4 2 0 10 -2 10 -1 10 1 10 2 10 3 1 Distance from the nucleus: z (pc) θ Q. What is a large gap? Q. Collimation is real (i.e. the jet is cylindrical or not ) ? We have no clear view of jet acceleration/ collimation even in the most studied AGN jet …
GRMHD (1st ever) Steady Inflow/Outflow Solutions for a Parabolic Streamline Steady GRMHD (cold) solution (a =0.9375) GRMHD Simulation (a =0.9375) B p field: parabolic solution (Blandford & Znajek 1977) B p field lines and characteristic surfaces + perturbation (Beskin & Nokhrina 2006) energy flux light surface Out-going Fast outflow Light Cylinder Out-going Alfvén Out-going Slow inflow separation surface In/out-flow Separation In-going Slow Ergosphere corona In-going Alfvén static limit + accretion flow light surface Horizon/in-going Fast Black Hole Black Hole McKinney (2006) Pu, MN, + (2015), ApJ
Open Question 1: How Acceleration/ Collimation in MHD jets is Terminated? separation point Pu, MN+ (2015), ApJ ; qualitatively consistent with McKinney (2006) - Capability of cold RMHD jet acceleration can be measured by the total (matter + θ j ∝ z (1 − a ) /a Poynting)-to-matter energy flux ratio: µ γ = 1 + σ Γ ∝ z ( a − 1) /a σ : Poynitng-to-matter energy flux ratio Γ θ ∼ 0 . 1 γ ∞ � µ ( σ ∞ � 0) c.f., Jorstad+ (2005) Pushkarev+ (2009) Clausen-Brown+ (2013) µ ∼ 10 1 − 3 � � � � ( Beskin 2010; Nokhrina+ 2015) � , (45) µ � 10 would be � � � �� Γ ¯ B r / ¯ B φ ' 1 quasi F-F; � norm? e.g., Lyutikov+ (2005) σ ∞ � 0 Clausen-Brown+ (2011) along a streamline that threads the EH at mid-latitude (similar to McKinney 2006) � � � � �� � B � � � � � � � � � B � � � � �� � � � ∣ ∣ ∣ ∣ � � � � ∣ ∣ � � � ��
Figure 6. Histograms of projected linear distance for jet features Transition found in MOJAVE AGNs Lister+ (2013) ( see also Kellermann 2004; similar tendency can been seen ) Homan+ (2015) A transition from positive to negative acceleration seems to locate at ~ 10 pc - (Lister+ 2013; Homan+ 2015) ⇒ ~ 100 pc or longer in de-projection Non-ballistic flows are strongest at < 10 pc; jets are expanding less rapidly than - z ∝ r , so that jets is still being collimated (Homan+ 2014; also Pushkarev & Kovalev 2012 w/ T b analysis)
SL Motions Upstream of HST-1 EVN Observations@1.6GHz 2007 200 milliarcsecond 2008 2009 0 0 200 400 600 800 milliarcsecond Asada, MN+ (2014), ApJL
A Missing Link Has Been Filled Bondi radius Kovalev et al. 2007: VLBA at 15 GHz Kovalev et al. 2007: VLBA at 15 GHz Reid et al. 1989: Gloabal VLBI at 1.6 GHz Reid et al. 1989: Gloabal VLBI at 1.6 GHz Cheung et al. 2007: VLBA at 1.6 GHz Cheung et al. 2007: VLBA at 1.6 GHz Biretta et al. 1999: HST Biretta et al. 1999: HST Biretta et al. 1995: VLA at 15 GHz Biretta et al. 1995: VLA at 15 GHz Meyer et al. 2013: HST Meyer et al. 2013: HST Ly et al. 2007; VLBA 43 GHz (area) Ly et al. 2007; VLBA 43 GHz (area) Walker et al. 2008: VLBA 43 GHz Walker et al. 2008: VLBA 43 GHz Acciari et al. 2009: VLBA 43 GHz Acciari et al. 2009: VLBA 43 GHz This work: EVN at 1.6 GHz Asada, MN+ (2014), ApJL
Jet Structure and Dynamics in M87 Deprojected distance from the nucleus: z (pc) 10 -3 10 -2 10 -1 10 1 10 2 10 3 10 4 1 10 6 “Jet break” MERLIN 1.8 GHz (Asada & Nakamura 2012) EVN 1.6 GHz (Asada & Nakamura 2012) 10 5 VLBA 15 GHz (Asada & Nakamura 2012) VLBA 43 GHz (Asada & Nakamura 2012) Radius: r ( r s ) VLBA Core 43 GHz (Nakamura & Asada 2013) 10 4 VLBA Core 86 GHz (Nakamura & Asada 2013) EHT Core 230 GHz @2009 (Doeleman et al. 2012) z ∝ r 0 . 99 VLBA Core 5, 8, 15, 24, 43, & 86 GHz (Hada et al. 2013) EHT Core 230 GHz @2012 (Akiyama et al. 2015) 10 3 HST-1 10 2 z ∝ r 1 . 75 10 1 ISCO for Schwarzshild BH “ D ” 1 e n c o e i VLA 15 GHz (Biretta et al. 1995) 10 1 l t a e HST (Biretta et al. 1999) r r a e HST (Meyer et al. 2013) l t e i VLBA 1.7 GHz (Cheung et al. 2007) o c n c Four-velocity: Γ V / c VLBA 1.7GHz + EVN 5 GHz (Giroletti et al. 2012) A ” 1 EVN 1.6 GHz (Asada et al. 2014) “ VLBI 1.6 GHz (Reid et al. 1989) HST-1 VLBA 15 GHz (Kellermann et al. 2004) VLBA 15 GHz (Kovalev et al. 2007) Sub/Superluminal Pairs 10 -1 Bondi radius (area) VLBA 43 GHz (Ly et al. 2007) (Trailing MHD shocks? 10 -2 MN+ 2010, MN & Meier 2014) 10 -3 10 1 10 2 10 3 10 4 10 5 10 6 10 7 1 Distance from the nucleus: z ( r s ) Asada & MN (2012), ApJL ; MN & Asada (2013), ApJ ; Asada, MN+ (2014), ApJL
Outline • Introduction to M87; puzzle has remained unsolved on the jet acceleration/collimation � • MHD Jet global structure and dynamics under the BH gravitational influence and beyond � • MAD in Action; how large is the BH spin? � • Lessons learned from M87; “ jet break ” in AGNs may be norm in the BH-galaxy co-evolution? � • Summary
Open Question 2: How Are GRMHD Jets Confined? HARM 2D (Gammie+ 2003; Noble+ 2006): 256 2 grids a = 0 . 9375 BZ77 BP82 PRELIMINARY p gas p mag β p ≡ p gas /p mag - Quasi-steady jet is formed, while corona/wind are highly turbulent (~ 2,000 MG/c 3 ) - Global jet structure is unchanged even after the MRI in the corona is saturated - Gas pressure-dominated corona may not confine the jet, suggesting the jet and corona/wind may be a force-free on the small scale (< 100 r s )
Outer Boundary of GRMHD Jets - A power-law dependence of the azimuthal current on the equatorial plane (McKinney & Narayan 2007): � (Parabolic, Blandford & Znajek 1977 ) ν = 1 � d I φ 1 ν = 3 / 4 � ( Blandford & Payne 1982 ) d r ∝ r 2 − ν � (split-monopole) ν = 0 � - GRMHD simulated jet agrees well with the force-free field d I φ 1 solution for a thin disc with an r -5/4 (i.e., BP82) d r ∝ r 2 − ν Tchekhovskoy+ (2011) a=0.9375 4 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ BZ77 BP82 ⊗ Toroidal current: I φ 2 - Strong BH B -field squeeze the accretion flow vertically down to h / r ~ 0.05 near the EH from ~ (0.3 - 1) at large distances (Tchekhovskoy 2015) 0 0 2 4
a = 0 . 5 a = 0 . 7 a = 0 . 9 a = 0 . 99 PRELIMINARY b 2 / ρ c 2 b 2 / ρ c 2 ' 1 p gas /p mag . 0 . 1 PRELIMINARY β plasma t = 10 4 GM/c 3 t = 10 4 GM/c 3 t = 10 4 GM/c 3 t = 10 4 GM/c 3
Recommend
More recommend