jennifer k ryan heinrich heine university d sseldorf
play

Jennifer K. Ryan Heinrich Heine University, Dsseldorf, Germany - PowerPoint PPT Presentation

Utilizing Geometry of Smoothness-Increasing-Accuracy-Conserving (SIAC) filters for reduced errors Joint work with Julia Docampo Snchez (MIT) Jennifer K. Ryan Heinrich Heine University, Dsseldorf, Germany University of East Anglia,Norwich,


  1. Utilizing Geometry of Smoothness-Increasing-Accuracy-Conserving (SIAC) filters for reduced errors Joint work with Julia Docampo Sánchez (MIT) Jennifer K. Ryan Heinrich Heine University, Düsseldorf, Germany University of East Anglia,Norwich, United Kingdom Advances in Applied Mathematics 18-20 December 2018 Portions of this work partial funded by Air Force Office of Scientific Research under grant number 1 FA8655-09-1-3017

  2. SMOOTHNESS-INCREASING ACCURACY-CONSERVING (SIAC) FILTER SIAC filtering allows: • Extract global superconvergence • Create globally smooth approximations superconvergence extraction through siac filtering Approximation order: p+1 SIAC DG order: 2p+1

  3. APPLICATIONS: FLOW VISUALIZATION Visualizing Vorticity (from NACA wing simulation) 3 Jallepelli, Docampo, Ryan, Haimes, and Kirby, IEEE TVCG, 2018

  4. DATA INFORMATION ➤ Re = 1.2x10 6 , 12 degree angle of attack ➤ Results from Nektar++: ➤ continuous Galerkin (cG) discretization ➤ p=5 polynomials ➤ 211180 tetrahedra ➤ 38680 prisms ➤ Box is sampled and vorticity is computed at a resolution of 90 x 90 x 90 . 4

  5. 2D SIAC FILTER: COMPUTATIONAL FOOTPRINT Tensor Product Filter 1D Line SIAC Filter 5

  6. OUTLINE ➤ Background ➤ Convergence properties of Discontinuous Galerkin method ➤ Smoothness-Increasing Accuracy-Conserving (SIAC) filter ➤ Divided Difference Estimates ➤ Line SIAC filter ➤ Numerical results ➤ Conclusion & Future Work 6

  7. DISCONTINUOUS GALERKIN: CONVERGENCE PROPERTIES For linear hyperbolic equations over a regular grid: ➤ In L 2 : k u � u h k 0  Ch p +1 ➤ Outflow edge: | ( u − u h )( x j +1 / 2 ) | ≤ Ch 2 p +1 ➤ Negative-Order norm: ( ∂ α h ( u � u h ) , Φ )  Ch 2 p +1 k ∂ α h ( u � u h ) k − ( p +1) = sup k Φ k p +1 Φ ∈ C ∞ 0 7

  8. Extracting Superconvergence Smoothness-Increasing Accuracy-Conserving (SIAC) Filters 8

  9. SIAC FILTERED DG SIAC filtered solution: ✓ x − y ◆ h ( x, t ) = 1 Z u ∗ u h ( y, t ) dy K H H R SIAC filtered error: k ( u � K (2 p +1 ,p +1) ⇤ u h )( T ) k 0  Ch 2 p +1 (Uniform) h k ( u � K (2 p +1 ,p +1) 2 3 (2 p +1) (Non-uniform) ⇤ u h )( T ) k 0  Ch H Mock & Lax (1978) Bramble & Schatz, Math. Comp (1977) Cockburn, Luskin, Shu, & Süli, Math. Comp (2003) (❩ L-inf estimates )❪ Ji, Xu, Ryan, Math. Comp. (2012)

  10. SIAC KERNEL ➤ SIAC kernel: ➤ Linear combination of B-splines of order m+1 . r X c γ ψ ( m +1) ( x − γ ) K ( x ) = γ = − r Chosen to maintain 2r moments B-spline chosen for desired smoothness ➤ Filter width: (2r+m+1)H, where H is the scaling (generally the mesh size). ➤ Alternatively: Can choose coefficients to satisfy data requirements.

  11. SIAC KERNEL ➤ SIAC kernel: ➤ Linear combination of B-splines of order m+1 . r X c γ ψ ( m +1) ( x − γ ) K ( x ) = γ = − r Chosen to maintain 2r moments B-spline chosen for desired smoothness ➤ Filter width: (2r+m+1)H, where H is the scaling (generally the mesh size). ➤ Alternatively: Can choose coefficients to satisfy data requirements.

  12. SIAC KERNEL: FOURIER SPACE ➤ In physical space, the filter is r X c γ ψ ( m +1) ( x − γ ) K ( x ) = γ = − r ➤ In Fourier space this is: ◆ m +1 ! r ✓ sin( k π ) ˆ X K ( k ) = c 0 + 2 c γ cos( γ k π ) k π γ =0 Thomee, Math. Comp. (1977) Ji & Ryan, ICOSAHOM 2014 Proceedings

  13. SIAC KERNEL: FOURIER SPACE SIAC filter: first-order B-spline SIAC filter: fourth-order B-spline. (top hat function). Basic properties of dg and beyond Plot of full kernel in Fourier space Plot of full kernel in Fourier space for preserving 2, 4 and 6 moments. for preserving 2, 4 and 6 moments.

  14. h ( x, t ) = 1 ✓ x − y ◆ Z TYPICAL PARAMETER CHOICE u ∗ u h ( y, t ) dy K H H R Number B-Splne Number Possible p B-Splines Order elements accuracy 1 3 2 5 3 H < D x 3 1 3 3 Order p+1 2 5 3 7 —> 9 5 H = D x 5 1 7 5 up to 3 1 4 —> 5 3 Order 2p+1 3 7 4 11 7 7 1 8 —> 9 7 5 1 6 —> 7 5

  15. SIAC KERNEL p=1 Kernel: • Preserves 2 moments • Continuous • Support of 5 elements superconvergence extraction through siac filtering p=2 Kernel: • Preserves 4 moments • C 1 continuity • Support of 7 elements

  16. SIAC KERNEL: MULTIPLE DIMENSIONS ➤ The post-processed solution: ✓ ¯ ✓ ¯ ✓ ¯ 1 ◆ ◆ ◆ Z x 1 − x 1 x 2 − x 2 x d − x d h ( ¯ x , t ) = u h ( x , t ) d x u ∗ R d K K · · · K ∆ x 1 ∆ x 2 ∆ x d H d where H d = ∆ x 1 ∆ x 2 · · · ∆ x d ➤ The post-processing kernel is the same in each dimension: r X c γ ψ ( m +1) ( x − γ ) K ( x ) = γ = − r

  17. SIAC FILTER: ERROR ESTIMATES Through convolution, we can obtain a higher order accurate solution: k u � u ∗ h k 0  k u � u ∗ k 0 + k K H ⇤ ( u � u h ) k 0 | {z } | {z } Filter Error Discretization Error Error in filtered solution iltering Determined by Determined by number of moments ( 2r ) Numerical scheme • the filter preserves Choice of kernel function • Ch 2r+1 (Dual problem of PDE) • Ch s •

  18. SIAC FILTER: ERROR ESTIMATES Second term Using properties of B-splines and convolution X k K H ⇤ ( u � u h ) k 0  k D α ( K H ⇤ ( u � u h )) k − ( m +1) | α | ≤ m +1 X  k K k 1 k ∂ α H ( u � u h ) k − ( m +1) | α | ≤ m +1 Properties of the scheme/Equation where h ( u � u h ) k − ( p +1)  Ch 2 p +1 k ∂ α

  19. Question: How can we use a 1D filter for 2D data? 19

  20. LINE SIAC FILTER FOR MULTI-DIMENSIONAL FILTERING ➤ Cartesian-aligned filter vs. Rotated filter h is the uniform DG element size, H is the kernel scaling 20

  21. SIAC FILTER: DIVIDED DIFFERENCE ESTIMATES ➤ We need to worry about: k ∂ α H ( u � u h ) k − ( m +1) ➤ Requires: ➤ Relating coordinate-aligned derivatives with arc-length derivatives ψ ( m +1) ( x, y ) = ∂ α 1 ∂ α 2 D α e ∂ y α 2 e ψ ( m +1) ( x, y ) ∂ x α 1 = cos α 1 θ sin α 2 θ d | α | dt | α | ψ ( m +1) ( t ) = cos α 1 θ sin α 2 θ∂ | α | H ψ ( m +1 − α ) 21

  22. SIAC FILTER: DIRECTIONAL DIVIDED DIFFERENCE ESTIMATES ➤ Need to relate directional divided differences to coordinate- aligned divided differences. ➤ Direction vector: u =(u x ,u y ). ➤ Scaled directional divided difference with respect to u : ✓ ✓ ◆ ✓ ◆◆ ∂ u , H f ( t ) = 1 x + H 2 u x , y + H x − H 2 u x , y − H f 2 u y − f 2 u y H ✓ ◆ ✓ ◆ x, y + H x − H = ∂ u x , H f + ∂ u y , H f 2 u y 2 u x , y . ➤ a - th directional divided difference: ∂ α − 1 � � ∂ α u , H f ( x, y ) = ∂ u , H u , H f ( x, y ) α > 1 . , 22

  23. SIAC FILTER: DIVIDED DIFFERENCE ESTIMATES ➤ We can relate the directional divided difference to the coordinate aligned divided difference D ↵ ψ ( ` ) ( t ) = (cos θ ) ↵ x (sin θ ) ↵ y ∂ ↵ h ψ ( ` − ↵ ) ( x ) coordinate aligned ➤ As long as q s 0, p /2 , then we have superconvergence! ➤ Leads to a reduced error constant. k K H ⇤ ( u � u h ) k 0  cos α 1 θ sin α 2 θ C X k K H k 1 k ∂ α H ( u � u h ) k − ( m +1) | α | ≤ m +1 23

  24. LINE SIAC FILTER FOR MULTI-DIMENSIONAL FILTERING ➤ Reducing the support to a line: axis-aligned vs. rotated Tensor Product SIAC filter Line SIAC filter 24

  25. LINE SIAC FILTER FOR MULTI-DIMENSIONAL FILTERING u t + u x + u y = 0 , u ( x, y, 0) = sin( x + y ) SISC (2017) Tensor Product Line Filter Line Filter DG Errors p /4 rotation 3 p /4 rotation Filter 25

  26. LINE SIAC FILTER FOR MULTI-DIMENSIONAL FILTERING ➤ Numerical test: 2D advection equation, u(x,u,0)=sin(x+y) Unfiltered Line Filtering 2D Filter θ = 3 π / 4 θ = π / 4 θ = 0 L 2 -error L 2 -error L 2 -error L 2 -error N Order Order Order P 1 20 9.7e-03 - 1.5e-03 - 2.7e-03 - 1.6e-03 40 2.4e-03 2.02 1.9e-04 2.98 2.6e-04 3.33 2.0e-04 80 5.9e-04 2.01 2.4e-05 2.99 2.8e-05 3.21 P 2 20 2.4e-04 - 1.5e-06 - 1.4e-04 - 6.1e-06 40 2.9e-05 3.01 4.7e-08 4.99 2.3e-06 5.91 1.2e-07 80 3.6e-06 3.01 1.5e-09 5.00 3.7e-08 5.95 - P 3 20 4.5e-06 - 7.7e-10 - 1.6e-05 - 1.4e-07 40 2.8e-07 4.01 6.9e-12 6.79 6.9e-08 7.87 5.6e-10 ➤ Superconvergence and error reduction! 26

  27. LSIAC FILTER: SMOOTHNESS 27

  28. LINE SIAC FILTER FOR MULTI-DIMENSIONAL FILTERING u t + u x + u y = 0 , u ( x, y, 0) = sin( x ) cos( y ) 28

  29. LINE SIAC FILTER FOR MULTI-DIMENSIONAL FILTERING u t + u x + u y = 0 , u ( x, y, 0) = sin( x ) cos( y ) 29

  30. LINE SIAC FILTER FOR MULTI-DIMENSIONAL FILTERING ✓ u 2 ✓ u 2 ◆ ◆ u ( x, y, 0) = 2 + 1 u t + + = 0 , 2 sin( x + y ) . 2 2 x y 30

  31. LINE SIAC FILTER FOR MULTI-DIMENSIONAL FILTERING ✓ u 2 ✓ u 2 ◆ ◆ u ( x, y, 0) = 2 + 1 u t + + = 0 , 2 sin( x + y ) . 2 2 x y Nonlinear! 31

  32. LSIAC FILTER: COMPUTATIONAL COST ➤ Total operations per point. Filter Type Intersection Scans Integrals Quadrature Sums Line Filter 4 10 10 2D Rotated Filter 64 93 8649 2D No Rotation 64 63 3969 ➤ Elapsed time per point. No. of Splines and degree Line Filter 2D Rotated Filter 2D No Rotation 3 , 1 0.09 0.87 0.68 5 , 2 0.35 3.49 2.60 7 , 3 0.41 10.42 6.75 32

Recommend


More recommend