Jörg Ackermann Ina Koch Molecular Bioinformatics Institute of Computer Science Johann Wolfgang Goethe-University Frankfurt am Main j.ackermann@uni-frankfurt.de ina.koch@bioinformatik.uni-frankfurt.de http://www. bioinformatik.uni-frankfurt.de/index.html Sofia, 28th of June 2011
The -omics define different abstraction levels (2 x 10 4 ) (> 10 6 ) (> 10 6 ) (> 10 7 ) Gene regulatory Signal transduction networks networks (2 x 10 3 ) Data: • large and complex • time- and location-dependent • incomplete Metabolic • redundant and changing termini networks Adapted from R.E. Gerszten and T.J. Wang. Nature (2008) 451 :949 – 952
Petri nets in biology Pentose phosphate pathway G6P + 2 NADP + + H 2 O → R5P + 2 NADPH + 2 H + + CO 2 Ribose-5-phosphate Glucose-6-phosphate 2 NADPH NADP + 2 2 H + r H 2 O CO 2
Petri nets in biology Pentose phosphate pathway G6P + 2 NADP + + H 2 O → R5P + 2 NADPH + 2 H + + CO 2 Ribose-5-phosphate Glucose-6-phosphate 2 NADPH NADP + 2 2 H + r H 2 O CO 2 Koch, Reisig, Schreiber (Eds.) (2011) Modeling in Systems Biology – The Petri Net Approach, Springer-Verlag, New York, Berlin
Sucrose-to-starch-pathway in potato tubers Suc + UDP UDPglc + Frc sucrose synthase: UDP-glucose Pyrophosphorylase: UDPglc + PP G1P + UTP phosphoglucomutase: G6P G1P Frc + ATP → F6P + ADP fructokinase: phosophoglucoisomerase: G6P F6P Glc + ATP → G6P + ADP hexokinase: Suc → Glc + Frc invertase: sucrose phosphate synthase: F6P + UDPglc S6P + UDP sucrose phosphate phosphatase: S6P → Suc + P i glycolysis (b): F6P + 29 ADP + 28 P i → 29 ATP NDPkinase: UDP + ATP UTP + ADP sucrose transporter: eSuc → Suc ATP consumption (b): ATP → ADP + P i starch synthesis: G6P + ATP → 2P i + ADP + starch adenylate kinase: ATP + AMP 2ADP pyrophosphatase: PP → 2 P i
eSuc Sucrose transporter Sucrose phosphate Invertase phosphatase Suc UDP Sucrose synthase P i Frc S6P Glc ATP ATP UDPglc Sucrose phosphate synthase Hexokinase Fructokinase ADP ADP UDP F6P PP UDP-glucose Phosphoglucoisomerase Glycolysis 28 pyrophospho- ADP rylase 29 P i 29 ATP ATP Phosphoglucomutase UTP ATP G1P G6P consumption ATP NDPkinase Starch forward UTP synthase ADP ADP UDP 2 P i P i starch ATP ADP backward
Invariant definitions The incidence matrix C = P T p 1 corresponds to the stoichiometry matrix. t 2 t 3 t 1 t 2 t 3 ( ) 2 p 1 -2 1 1 C = p 2 1 -1 0 p 2 t 1 Steady-state assumption Place (p-) invariant: X = {x 1 , . . . , x m } Transition (t-) invariant: Y = { y 1 , . . . , y m } C T x = 0 C y = 0 – 2 x 1 + x 2 = 0 – 2 y 1 + y 2 + y 3 = 0 x 1 – x 2 = 0 y 1 – y 2 = 0 x 1 = 0
Functional network decomposition T-invariants : minimal non-negative, non-trivial integer solutions minimal: ¬ ∃ invariant z : supp (z) ⊂ supp (x) and gcd { x 1 , . . . , x m } = 1 Petri net interpretation Lautenbach (1973) - set of transitions, whose firing reproduces a given marking - indicate the presence of cyclic firing sequences Biological interpretation - Elementary modes Schuster & Schuster (1993) - based on convex cone analysis - minimal set of enzymes which operate at steady-state - represent basic pathways, reflecting the whole possible steady-state behavior
A successful prediction Glucose Black elementary mode: normal Krebs-cycle Blue elementary mode: catabolic way predicted in Liao et al. (1996) and Schuster et al. (1999). CO 2 Tentative experimental results in Wick et al.(2001). Experimental proof: AcCoA Pyr PEP E. Fischer & U. Sauer: A novel metabolic cycle catalyzes glucose oxidation and anaplerosis Cit Oxac in hungry Escherichia coli, J. Biol. Chem . (2003) 278 : 46446 – 46451 CO 2 IsoCit Gly Mal CO 2 OG Fum Succ SucCoA CO 2
Computational task construct all minimal t-invariants of a network equivalent to get all extreme rays of a convex polyhedral cone | 0 , 0 P x A x x unique set of generators of the cone all operational modes of the network
Two strategies Strategy 1 1. | 0 Start with cone Q x A x P 0 For each component i generate a new cone | 0 , Q x x x Q Q 1 i i i i Strategy 2 2. Start with cone | 0 Q x x P 0 For each row vector generate a new cone A i | 0 , Q x A x x Q Q 1 i i i i
Problem construct extreme rays of Q i from the extreme rays of Q i-1 lead to “state explosion” task classified to be NP-hard
Application to real-life networks [1] Klee et al. (1972) [2] Pascoletti (1986) [3] Grunwald et al. (2008) [4] MolBI model (unpublished) [5] Herrmann (2006) [6] König (1997)
Run time differences CPU run times of computation of t-invariants (AMD I3 Processor, 3 GHz, 4 GB RAM, 64 bit Suse 11.4); Bold-faced times indicate the fastest methods; a failed, b stopped [1] Starke (1990), Roch & Starke (1999) [2] Lehrack (2006) [3] Schuster et al. (1993) [4] Ackermann (2010) according Colom & Silva (1991)
Conclusions Computation of all t-invariants is an important task in analyzing biological networks Various methods and implementations show significantly different efficiencies in practical applications There is room for improvements
Outlook Test of more programs for even larger networks of practical relevance Development of new methods efficient for biological networks Start competition with other groups to extend the applicability of algorithms to greater biological networks
Acknowledgements to the MolBI - group www. bioinformatik.uni-frankfurt.de/index.html Благодаря
Recommend
More recommend