IST MUPBED: Multi-Partner European Test Network for Research Networking Multi-Partner European Test Beds for Research Networking IST FP6 Project in 2nd Call, “Research Networking Test Beds” IST FP6 Project in 2nd Call, “Research Networking Test Beds” • Project Overview, September 2006 • Project Overview, November 2007 Tove Madsen (tove.madsen@acreo.se) Anders Gavler (anders.gavler@acreo.se) www.acreo.se 0508 # 1
MUPBED Consortium • Equipment Manufacturers – Ericsson (Germany); Project Co-ordinator – Marconi SpA (Italy) – Juniper Networks (Ireland) • Network Operators – Telecom Italia (Italy) – Deutsche Telekom - T-Systems (Germany) – Telefonica I+D (Spain) – Magyar Telekom (Hungary) • Research Centres – ACREO (Sweden) – TU Denmark (Denmark) – Politecnico di Milano (Italy) – University of Erlangen-Nuremberg (Germany) – DFN-Verein (Germany) – GARR (Italy) – RedIRIS/Red.es (Spain) – PSNC (Poland) www.acreo.se 0508 # 2
MUPBED Layer2 Network Realisation Full mesh between test bed sites Northern Europe test bed GMPLS ACREO Eastern Europe GE NORDUnet test bed PIONIER DTU PSNC GE Ethernet RedIRIS GÉANT2 IP/MPLS FAU ASON/GMPLS Telefonica GE GE I+D T-Systems GE DT DFN Western Europe GARR test bed Telecom Central Europe Italia ASON/GMPLS Southern Europe test bed test bed www.acreo.se 0508 # 3
Relevance of MUPBED for NRENs • Harmonisation/convergence of “telecom operator” and NREN solutions • Network architecture work, selected theoretical investigations • Leading edge control plane solutions: – Focus on IETF GMPLS and ITU ASON approach, including multi-domain inter-working – Driving standardisation • Work on “application – network” inter-working – Applications (requirements, interface, selected trials in test bed) – User groups (within and outside the MUPBED consortium) • Extended field trials for selected solutions: Set-up and operation of European scale test bed • Collaboration with GEANT2 Project, TF-NGN www.acreo.se 0508 # 4
Future applications to support Areas of NREN applications • High Energy Physics (HEP) • Atmospheric Sciences • Medical Sciences • Grids/Computing • Geosciences • Fusion/ITER • Astronomy • Networking www.acreo.se 0508 # 5
NRENs attitude towards MUPBED technologies • PSNC, Poland: • Migrating to IP/MPLS • Highly interested in using MUPBED developments for on-demand bandwidth provisioning • Red.es, Spain: • Currently IP/MPLS-based network and manual L2VPN configuration • Demand on bandwidth and P2P connectivity is only increasing • Completed the upgrade of L2 (up to 4x10 GbE between nodes), L2 VLANs + VPNs are now provided to customers • Decided on L1 upgrade (WDM), most likely deployment by 2008 • Near future deployment of ASON/GMPLS for automatic bandwidth provisioning, participates in AUTOBAHN testing of GMPLS • GARR, Italy: • already using IP/MPLS, DWDM, 10 Gb/s links (SDH, Ethernet) • interest in ASON/GMPLS as a tool for traffic engineering and optical equipment (L1) management • Actual deployment in a part of the production network on a time scale of 1-2 years • DFN, Germany: • Currently using DWDM up to 160 x 10 Gb/s, Ethernet (95% of links are GbE, including some 10GbE) and SDH, VPN and best-effort IP • Follows the MUPBED developments in the ASON/GMPLS control plane Most likely to start a GMPLS-based intra-domain pilot in the future • www.acreo.se 0508 # 6
Demo Terena 2007 Uncompressed, on-demand video transmission Data plane: FAU-DT-Acreo-DTU/Exhibition (400 Mb/s, ca 2000 km) Northern Europe test bed GMPLS ACREO Eastern Europe NORDUnet GE test bed PIONIER DTU PSNC GE Ethernet RedIRIS GÉANT2 IP/MPLS FAU ASON/GMPLS Telefonica GE GE I+D T-Systems GE DT DFN Western Europe GARR test bed Telecom Central Europe Italia ASON/GMPLS Southern Europe test bed test bed www.acreo.se 0508 # 7
Further Information • Web: – http://www.ist-mupbed.eu http://www.ist-mupbed.org • Project Co-ordinator: – jan.spaeth@ericsson.com www.acreo.se 0508 # 8
Working Party (WP) 3 of MUPBED • MPLS / GMPLS “memory jogging” • The MUPBED network • User to Network Interface testing in MUPBED • GMPLS Ethernet in MUPBED • Multi-layer GMPLS in MUPBED • Technical summary Anders Gavler Research engineer Acreo anders.gavler@acreo.se www.acreo.se 0508 # 9
Jogging your memory about MPLS • Multi Protocol Label Swapping • Traffic Engineering extensions – E.g. RSVP with MPLS TE extensions for signaling – E.g. OSPF with MPLS TE extensions for routing • Label has link local significance • No data plane / control plane separation www.acreo.se 0508 # 10
The integrated GMPLS approach • Generalized MPLS • Data Plane (DP) and Control Plane (CP) separation • GMPLS TE extensions for signalling (RSVP), routing (e.g. OSPF) • Link Management Protocol (LMP) – new protocol – Informs RSVP-TE and OSPF-TE about the data plane • Technology dependent labels (SDH, fiber port, wavelength etc) ontrol Plane LSR LSR LSR LSR LSR LSR OSPF-TE OSPF-TE OSPF-TE OSPF-TE OSPF-TE OSPF-TE LMP LMP LMP LMP LMP LMP RSVP -TE RSVP -TE RSVP -TE RSVP-TE RSVP -TE RSVP -TE Layer n Layer n LSP Data Plane Layer n -1 Layer n -1 LSP Layer n -2 Layer n -2 LSP www.acreo.se 0508 # 11
The User to Network Interface - UNI If you are allowed to signal the provider network this can be seen as a sort of bandwidth / VPN on demand, i.e., a service provisioning tool I-NNI - Interior Network to Network Interface www.acreo.se 0508 # 12
The MUPBED network Date Plane transport over national/regional NRENs + GEANT Control Plane UNI-C (Client) established through SW Agent IPSec tunnels by PSNC www.acreo.se 0508 # 13
Different UNI types in MUPBED • Two flavours: IETF UNI and OIF UNI – OIF: UNI-C (Client) and UNI-N (Network) • No routing information This part could be • Both based on IETF RSVP-TE integrated into an • Differences like application, i.e., a – LSP Session / Call and Connection service provisioning tool (which was segments actually done by DTU) – TNA address usage – Etc mngt UNI RSVP agent ASON or GMPLS command protocol - IETF or OIF RSVP-TE Network domain line client - Packet labeling UNI proxy server ASON GMPLS UNI UNI network network domain domain IETF RSVP_TE module OIF UNI-C 2.0 module www.acreo.se 0508 # 14
OIF UNI test case IETF UNI over OIF UNI GRE or plain over IPSec Acreo Router DT SDH Equipment Juniper M5 UNI -C lo0 Internet 192.168.1.4/32 Agent PC Internet lo0 DT Network UNI-N X Control UNI Control Channel Channel IPSec GbE GMPLS LSP LSP Interface Interface GbE.612 GbE.612 LSP VLAN 612 Setup and Teardown tested OK! Telecom Italia Network TI TID UNI-C Telefonica UNI-C TI DP Spain TID DP GbE GbE www.acreo.se 0508 # 15
IETF UNI test case Result 1. Setup and teardown – OK! Acreo Router PSNC Router Juniper M5 Juniper Mx 2. Data plane separation through multiple VLANs – Not OK! 192.168.1.4/32 192.168.1.5/32 lo0 lo0 UNI Control UNI Control Traffic Engineering GbE VLAN 612 Channel Channel Link ACREO - PSNC GMPLS GMPLS GRE GRE 10.35.100.0/30 LSP 172.16.99.2 LSP 172.16.99.1 ge-1/3/0.612 ge-x/x/x.612 172.16.13.1/24 172.16.13.2/24 Traffic Engineering Link Information: Traffic Engineering Link Information: TE-link local adress 10.35.100.2 TE-link local adress 10.35.100.1 Control TE-link Local ID 43352 TE-link Local ID 42543 Channel TE-link Remote ID 42543 TE-link Remote ID 43352 Local adress 10.35.100.2 Local adress 10.35.100.1 Local ID 54183 (label) Local ID 54183 (label) LSP Remote ID 54183 (label) Remote ID 54183 (label) www.acreo.se 0508 # 16
GMPLS L2 Ethernet Network in MUPBED • LSP setup - OK! • Design and setup – OSPF-TE - OK! • Linux PC – RSVP-TE - OK! –Ethernet Data Plane controller R2 • PCE – OK! E2 –Extended DRAGON Control Router NE OSPF -TE RSVP -TE Plane software SwitchCore Dragon/Linux PC • Ethernet DP Control Plane L2SC NE OSPF -TE by Switch Core RSVP -TE E1 Dragon/Linux PC • Linux Virtual CP/DP R1 Data Plane SwitchCore Router NE OSPF -TE RSVP -TE L2SC NE OSPF -TE RSVP -TE Dragon/Linux PC SwitchCore • Standardization just started Dragon/Linux PC L2SC NE –VLAN ID = LSP label? R3 OSPF -TE RSVP -TE Router NE –VID + MAC = LSP label? Dragon/Linux PC OSPF -TE E3 RSVP -TE –802.1Q, 802.1ad, Dragon/Linux PC LSP - Label Switched Path 802.1ah, 802.1Qay (PBB-TE) www.acreo.se # 17
Two layered GMPLS network (Router – Optical Cross Connect) GMPLS: Multi-layer networking and multi-technology control • Design and setup of an GMPLS three layered (MPLS, Ethernet and optical) network – DONE! • Some success in LSP setup • Much work remains – GMPLS Ethernet – Multi-layer LSP signaling – Multi-layer routing • Technology specific routing information – PCE – Development / Implementation • MPLS DP control • Optical DP control – Protection – Scalability – Virtual topolgies www.acreo.se 0508 # 18
Recommend
More recommend