isc operator for reconstructing bayesian network in gene
play

ISC Operator for reconstructing Bayesian Network in gene networks - PowerPoint PPT Presentation

ISC Operator for reconstructing Bayesian Network in gene networks context. Jimmy Vandel & Simon de Givry Outlines: Biological motivation Bayesian Networks framework Learning Algorithms Local Operators Comet language


  1. ISC Operator for reconstructing Bayesian Network in gene networks context. Jimmy Vandel & Simon de Givry

  2. Outlines: ➢ Biological motivation ➢ Bayesian Networks framework ➢ Learning Algorithms ➢ Local Operators ➢ Comet language ➢ Experimentation Vandel Jimmy Plan 1 /17

  3. Biological motivation DNA Gene 1 Gene 2 Gene 3 Vandel Jimmy 1. Biological motivation 2 /17

  4. Biological motivation DNA Gene 1 Gene 2 Gene 3 → gene expressions (mRNA concentrations) Vandel Jimmy 1. Biological motivation 2 /17

  5. Biological motivation DNA Gene 1 Gene 2 Gene 3 → gene expressions (mRNA concentrations) → gene regulations Vandel Jimmy 1. Biological motivation 2 /17

  6. Biological motivation DNA Gene 1 Gene 2 Gene 3 → gene expressions (mRNA concentrations) → gene regulations Vandel Jimmy 1. Biological motivation 2 /17

  7. Goal : Reconstruction of gene regulatory network. Escherichia coli (423 genes, 578 regulations) (SS. Shen-Orr and al., 2002) Vandel Jimmy 1. Biological motivation 3 /17

  8. Polymorphism Vandel Jimmy 1. Biological motivation 4 /17

  9. Polymorphism G1 G2 G3 Vandel Jimmy 1. Biological motivation 4 /17

  10. Polymorphism G1 G2 G3 G1 G2 G3 Vandel Jimmy 1. Biological motivation 4 /17

  11. Polymorphism G1 G2 G3 G1 G2 G3 DNA mutations in genes : in promoter region → impact on its gene activity Vandel Jimmy 1. Biological motivation 4 /17

  12. Polymorphism G1 G2 G3 G1 G2 G3 DNA mutations in genes: in promoter region → impact on its gene activity in coding region → impact on others gene activities Vandel Jimmy 1. Biological motivation 4 /17

  13. Polymorphism G1 G2 G3 G1 G2 G3 M1 M2 M3 DNA mutations in genes: in promoter region → impact on its gene activity in coding region → impact on others gene activities Genetic data from one genetic marker (SNP) for each gene Vandel Jimmy 1. Biological motivation 4 /17

  14. Discrete Bayesian network X i ={ G i , M i } G n Directed acyclic graph composed of variables M 1 M 1 M 2 M 3 Genetic data G 1 G 1 G 2 G 3 Gene expressions Vandel Jimmy 2. Bayesian Networks framework 5/17

  15. Discrete Bayesian network X i ={ G i , M i } G n Directed acyclic graph composed of variables M 1 M 1 M 2 M 3 Genetic data G 1 G 1 G 2 G 3 Gene expressions P G  G 3 / G 2, M 2  Conditional distribution G 3 !G 3 G 2 M 2 0.72 0.28 G 2 ! M 2 0.59 0.41 !G 2 M 2 0.63 0.37 !G 2 ! M 2 0.10 0.90 Graphic representation of a joint probability distribution n P G  X = ∏ i = 1 P G  X i / Pa i  Vandel Jimmy 2. Bayesian Networks framework 5/17

  16. Learning strategy G score = argmax G i P  G i / D  D We look for the graph with dataset . P  G i / D = P  D / G i  P  G i  P  D  ∝ P  D / G i  P  G i  P  D / G i  : :marginal likelihood of Gi ➢ P  G i  ➢ :prior probability of the graph G i → assumed to be uniform Objective function easy to evaluate and avoids over-fitting ➢ decomposable and penalized scores ➢ BDe score ( D.Heckerman Machine learning 1995) ➢ BIC score ( G.Schwartz Annals of statistics 1978) Vandel Jimmy 3. Learning algorithms 6/17

  17. Local search components 1. Search space ➢ Directed Acyclic Graph ➢ Partial DAG (PDAG) ➢ variable orders Vandel Jimmy 3. Learning algorithms 7/17

  18. Local search components 1. Search space 2. Initial structure ➢ Directed Acyclic Graph ➢ empty structure ➢ Partial DAG (PDAG) ➢ random structure ➢ informed structure (MWST, expert...) ➢ variable orders Vandel Jimmy 3. Learning algorithms 7/17

  19. Local search components 1. Search space 2. Initial structure 3. Neighborhood operators ➢ Directed Acyclic Graph ➢ empty structure ➢ addition of an edge ➢ Partial DAG (PDAG) ➢ random structure ➢ deletion of an edge ➢ informed structure ➢ reversal of an edge ➢ k look-ahead (MWST, expert...) ➢ variable orders ➢ optimal reinsertion Vandel Jimmy 3. Learning algorithms 7/17

  20. Local search components 1. Search space 2. Initial structure 3. Neighborhood operators ➢ Directed Acyclic Graph ➢ empty structure ➢ addition of an edge ➢ Partial DAG (PDAG) ➢ random structure ➢ deletion of an edge ➢ informed structure ➢ reversal of an edge ➢ k look-ahead (MWST, expert...) ➢ variable orders ➢ optimal reinsertion 4. Meta-heuristics ➢ hill climbing (with restarts) ➢ tabu search ➢ simulated annealing ➢ MCMC ➢ genetic algorithms ➢ ... Vandel Jimmy 3. Learning algorithms 7/17

  21. Local Operators ➢ addition ➢ deletion ➢ reversal (deletion + addition on the same pair) ➢ swap (deletion + addition including an extra node) Vandel Jimmy 4. Local operators 8/17

  22. Local Operators ➢ addition ➢ deletion ➢ reversal (deletion + addition on the same pair) ➢ swap (deletion + addition including an extra node) Example: Current situation Target situation G 1 G 2 G 1 G 2 G 3 G 3  score Add  G 2, G 3  score Add  G 1, G 3  0 Vandel Jimmy 4. Local operators 8/17

  23. Local Operators ➢ addition ➢ deletion ➢ reversal (deletion + addition on the same pair) ➢ swap (deletion + addition including an extra node) Example: Deletion  G 1, G 3  Add  G 2, G 3  G 1 G 2 Current situation Target situation G 1 G 2 G 1 G 2 G 3 G 3 G 3  score Add  G 2, G 3  score Add  G 1, G 3  0 Vandel Jimmy 4. Local operators 8/17

  24. Local Operators ➢ addition ➢ deletion ➢ reversal (deletion + addition on the same pair) ➢ swap (deletion + addition including an extra node) Example: Deletion  G 1, G 3  Add  G 2, G 3  G 1 G 2  score Add  G 1, G 3  0 Current situation Target situation G 1 G 2 G 1 G 2 G 3 G 3 G 3  score Add  G 2, G 3  score Add  G 1, G 3  0 Vandel Jimmy 4. Local operators 8/17

  25. Local Operators ➢ addition ➢ deletion ➢ reversal (deletion + addition on the same pair) ➢ swap (deletion + addition including an extra node) Example: Deletion  G 1, G 3  Add  G 2, G 3  G 1 G 2  score Add  G 1, G 3  0 Current situation Target situation G 1 G 2 G 1 G 2 G 3 G 3 G 3 Swap  G 1, G 3, G 2   score Add  G 2, G 3  score Add  G 1, G 3  0  score Add  G 2, G 3 − score Add  G 1, G 3  0 → escape from some local maxima Vandel Jimmy 4. Local operators 8/17

  26. ISC Operator (Iterative Swap Operator) Swap  G 2, G 3, G 7  ? Current situation  score Add  G 7, G 3 ∣ G 1  score Add  G 2, G 3 ∣ G 1  0 G 1 G 2 G 3 G 7 G 4 G 6 G 5 Vandel Jimmy 4. Local operators 9/17

  27. ISC Operator (Iterative Swap Operator) Swap  G 2, G 3, G 7  ? Cycle { G 3, G 4, G 6, G 7 } Current situation  score Add  G 7, G 3 ∣ G 1  score Add  G 2, G 3 ∣ G 1  0 G 1 G 2 G 3 G 7 G 4 G 6 G 5 Vandel Jimmy 4. Local operators 9/17

  28. ISC Operator (Iterative Swap Operator) Swap  G 2, G 3, G 7  ? Cycle { G 3, G 4, G 6, G 7 } Current situation  score Add  G 7, G 3 ∣ G 1  score Add  G 2, G 3 ∣ G 1  0 While there exist a cycle and ! STOP Select the edge of the cycle minimizing  score Add G 1 G 2 G 3 G 7 G 4 G 6 G 5 Vandel Jimmy 4. Local operators 9/17

  29. ISC Operator (Iterative Swap Operator) Swap  G 2, G 3, G 7  ? Cycle { G 3, G 4, G 6, G 7 } Current situation  score Add  G 7, G 3 ∣ G 1  score Add  G 2, G 3 ∣ G 1  0 While there exist a cycle and ! STOP Select the edge of the cycle minimizing  score Add G 1 Try to delete it G 2 G 3 G 7 G 4 G 6 G 5 Vandel Jimmy 4. Local operators 9/17

  30. ISC Operator (Iterative Swap Operator) Swap  G 2, G 3, G 7  ? Cycle { G 3, G 4, G 6, G 7 } Current situation  score Add  G 7, G 3 ∣ G 1  score Add  G 2, G 3 ∣ G 1  0 While there exist a cycle and ! STOP Select the edge of the cycle minimizing  score Add G 1 Try to delete it If  score Swap  G 2, G 3, G 7  score Deletion  G 4, G 6 ≤ 0 G 2 G 3 G 7 G 4 Else Record Deletion  G 4, G 6  G 6 G 5 Vandel Jimmy 4. Local operators 9/17

  31. ISC Operator (Iterative Swap Operator) Swap  G 2, G 3, G 7  ? Cycle { G 3, G 4, G 6, G 7 } Current situation  score Add  G 7, G 3 ∣ G 1  score Add  G 2, G 3 ∣ G 1  0 While there exist a cycle and ! STOP Select the edge of the cycle minimizing  score Add G 1 Try to delete it If  score Swap  G 2, G 3, G 7  score Deletion  G 4, G 6 ≤ 0 Try to swap this edge G 2 G 3 G 7 G 4 Else Record Deletion  G 4, G 6  G 6 G 5 Vandel Jimmy 4. Local operators 9/17

  32. ISC Operator (Iterative Swap Operator) Swap  G 2, G 3, G 7  ? Cycle { G 3, G 4, G 6, G 7 } Current situation  score Add  G 7, G 3 ∣ G 1  score Add  G 2, G 3 ∣ G 1  0 While there exist a cycle and ! STOP Select the edge of the cycle minimizing  score Add G 1 Try to delete it If  score Swap  G 2, G 3, G 7  score Deletion  G 4, G 6 ≤ 0 Try to swap this edge G 2 G 3  score Swap  G 2, G 3, G 7  score Swap  G 4, G 6, G 5 ≤ 0 If STOP Else G 7 G 4 Swap  G 4, G 6, G 5  Record Else Deletion  G 4, G 6  Record G 6 G 5 Vandel Jimmy 4. Local operators 9/17

Recommend


More recommend