ionization cross sections of
play

Ionization cross sections of neutrino non-standard interactions - PowerPoint PPT Presentation

Ionization cross sections of neutrino non-standard interactions with electrons Chih-Pan Wu Dept. of Physics, National Taiwan University P. 1 Motivation Neutrino-Electron Scattering at Low Energies 1. As a signal or as a background? 2.


  1. Ionization cross sections of neutrino non-standard interactions with electrons Chih-Pan Wu Dept. of Physics, National Taiwan University P. 1

  2. Motivation ➢ Neutrino-Electron Scattering at Low Energies 1. As a signal or as a background? 2. What kinds of processes have enhanced signals at low energies? 3. How to analyze the ν -e scattering signals with low energies? 4. Are there any theoretical improvement? P. 2

  3. ν -e Non-standard Interactions (NSI) E E   E  T  ( ) ( T  ) , q , q ( T  ) , q Weak = − g 1 / 2 Magnetic moment A =  + Interaction g 2 sin 1 / 2 v w     2 2 1 1   +  −   2   m e T E  An Example for enhanced signals at low T! P. 3

  4. Solar ν Background in LXe Detectors 99.98% ER rejection J. Aalbers et. al. (DARWIN collaboration), JCAP 11 , 017, arXiv:1606.07001 (2016). P. 4 J.-W. Chen et. al ., Phys. Lett. B 774 , 656, arXiv:1610.04177 (2017).

  5. Why Atomic Responses Become Important? The space uncertainty is inversely proportional to its incident momentum: λ ~ 1/p • 2 important factors: Atomic Size is inversely proportional to its – Incident momentum orbital momentum: Zm e α ~ Z *3.7 keV – Energy transfer Z: effective charge P. 5

  6. Atomic Ionization Process for ν | 𝑁 | 2 The weak scattering amplitude: The EM scattering amplitude: P. 6

  7. Electroweak Currents Lepton current: Atomic (axial-)vector current: , 1 , 0 Sys. Error: ~ 𝛽 ≈ 1% P. 7

  8. The Form Factors & Related Physical Quantities neutrino millicharge : : charge form factor charge radius squared : : anomalous magnetic neutrino magnetic moment : : anapol e ( P -violating) anapole moment : : electric dipole electric dipole moment : ( P , T -violating) 8 P. 8

  9. Neutrino-Impact Ionization Cross Sections neutrino weak scattering : neutrino magnetic moment scattering : neutrino millicharge scattering: P. 9

  10. Atomic Response Functions Do multipole expansion with J Initial states could be Final continuous wave functions approximated by could be obtained by MCRRPA bound electron orbital and expanded in the ( J , L ) basis wave functions given of orbital wave functions by MCDF P. 10

  11. Ab initio Theory for Atomic Ionization MCDF: multiconfiguration Dirac-Fock method   u a ( r , t ) ( t ) Dirac-Fock method: is a Slater determinant of one-electron orbitals 𝜔(𝑢) 𝑗 𝜖 𝜀 ሜ 𝜖𝑢 − 𝐼 − 𝑊 𝐽 (𝑢) 𝜔(𝑢) = 0 and invoke variational principle 𝑣 𝑏 (റ 𝑠, 𝑢) . to obtain eigenequations for  ( t ) multiconfiguration: Approximate the many-body wave function  ( t ) by a superposition of configuration functions   For Ge: ቐ𝜔 1 = Zn 4𝑞 1/2 2  =  ( t ) C ( t ) ( t )   𝜔 2 = Z𝑜 4𝑞 3/2 2  MCRRPA: multiconfiguration relativistic random phase approximation  u a ( r , t ) RPA: Expand into time-indep. orbitals in power of external potential        −   = + + + i t i t i t u ( r , t ) e u ( r ) w ( r ) e w ( r ) e ... a + − a a a a = + −  +  + i t i t C ( t ) C [ C ] e [ C ] e ... + − a a a a P. 11

  12. Here use square brackets with subscripts to designate the coefficients in powers of e ± i ω t in the expansion of various matrix elements: 𝛿 𝛽𝛾 : Lagrange multipliers MCDF Equations: † : functional derivatives 𝜀 𝛽    0 + = EC C H 0 † with respect to 𝑣 𝛽 a b ab b    0  −  = † δ * C C H u 0     a b ab  ab The zero-order equations are MCDF equations for unperturbed orbitals u a and unperturbed weight coefficients C a . MCRRPA Equations: ( )         ( )   − + = E C H C H C V C   a ab b ab  b ab  b 0 b b ( ) ( )         †  − − + † δ δ * * * C C i H C C C C H      a b ab ab a m b a b ab 0 ab ab ( )     −  +  = † * δ w u C C V         a b ab  ab The first-order equations are the MCRRPA equations describing the linear response of atom to the external perturbation v ± . P. 12

  13. Atomic Structure of Ge Multiconfiguration of Ge Ground State (Coupled to total J =0) : Selection Rules for J =1, λ =1: Angular Momentum Selection Rule: Parity Selection Rule: P. 13

  14. Multipole Expansion Transition matrix elements of atomic ionization by nu-EM interactions: P. 14

  15. Benchmark: Ge & Xe Photoionization Exp. data: Ge solid Theory: Ge atom (gas) Above 100 eV error under 5%. B. L. Henke, E. M. Gullikson, and J. C. Davis, Atomic Data and Nuclear Data Tables 54 , 181-342 (1993). J. Samson and W. Stolte, J. Electron Spectrosc. Relat. Phenom. 123 , 265 (2002). I. H. Suzuki and N. Saito, J. Electron Spectrosc. Relat. Phenom. 129 , 71 (2003). P. 15 L. Zheng et al ., J. Electron Spectrosc. Relat. Phenom. 152 , 143 (2006).

  16. Approximation Schemes Longitudinal Photon Approx. (LPA) : V T = 0 V L = 0, q 2 = 0 Equivalent Photon Approx. (EPA) :  Strong q 2 -dependence in the denominator : long-range interact ion Real photon limit q 2 ~ 0 :  relativistic beam or soft photons q μ ~ 0 Free Electron Approx. (FEA) : q 2 = -2 m e T  Main contribution comes from the phase space region similar with 2-body scattering  Atomic effects can be negligible : E ν >> Z m e α T ≠ B i (binding energy) P. 16

  17. Numerical Results: Weak Interaction = = E 10 k eV E 1 M eV v v e e (1) short range interaction 2 2 E =  v cutoff : T 0 . 38 k eV e (2) neutrino mass is tiny + Max 2 E m v e e (3) E ν >> Z m e α Kinematic forbidden by the inequality:      − FEA works well away from p 2 m T q 2 E T  r e Max e → the ionization thresholds. (backward scattering , m 0 ) ν e P. 17

  18. Numerical Results: NMM = E 1 M eV v e = E 10 k eV v e Similar with WI cases. FEA still faces a cutoff with lower E ν . For right plot, EPA becomes better when T approaches to E ν ( q 2 -> 0). Consistent with analytic Hydrogen results. P. 18

  19. Numerical Results: Millicharge = = E 1 M eV E 10 k eV v v e e EPA worked well due to q 2 dependence in the denominator of scattering formulas of F 1 form factor (a strong weight at small scattering angles). P. 19

  20. Double Check on Our Simulation • We perform ab initio many-body calculations for atomic initial & final states WF in ionization processes, and test by – Comparing with photo-absorption experimental data, for typical E1 transition, the difference is <5%. – In general, we have confidence to report a 5~10% theoretical errors. – It agrees with some common approximations under the crucial condition as we know in physical picture P. 20

  21. Solar ν As Signals in LXe Detectors P. 21 J.-W. Chen et. al ., arXiv:1903.06085 (2019).

  22. Experimental Limits Assuming an energy resolution from the XENON100 experiment P. 22 J.-W. Chen et. al ., arXiv:1903.06085 (2019).

  23. Spin-Indep. DM-e Scattering in Ge & Xe P. 23 J.-W. Chen et. al ., arXiv:1812.11759 (2018).

  24. Summary • Low energies nu-e Scattering can be the signal or important background in direct detection experiments, but the atomic effects should be taken into consideration now. • Ab initio atomic many-body calculations of ionization processes in Ge and Xe detectors performed with ~ 5% estimated error. That can be applied for 1. Constraining neutrino EM properties, 2. Study on solar neutrino backgrounds in DM detection, 3. Calculating DM atomic ionization cross sections. P. 24

  25. THANKS FOR YOUR ATTENTION!

  26. Constrain ν EM Properties by Ge Reference : Phys. Lett. B 731 , 159, arXiv:1311.5294 (2014). Phys. Rev. D 90 , 011301(R), arXiv:1405.7168 (2014). Phys. Rev. D 91 , 013005, arXiv:1411.0574 (2015). P. 26

  27. Sterile Neutrino Direct Constraint q 2 < 0 q 2 > 0 • Non-relativistic massive sterile neutrinos decay into SM neutrino. At m s = 7.1 keV, the upper limit of μ ν sa < 2.5*10 -14 μ B at 90% C.L. • • The recent X-ray observations of a 7.1 keV sterile neutrino with decay lifetime 1.74*10 -28 s -1 can be converted to μ ν sa = 2.9*10 -21 μ B , much tighter because its much larger collecting volume. P. 27 J.-W. Chen et al ., Phys. Rev. D 93 , 093012, arXiv:1601.07257 (2016).

  28. Constraints on millicharged DM P. 28 L. Singh et. al . (TEXONO Collaboration), arXiv:1808.02719 (2018).

  29. Dark Matter Direct Search Portals to the Dark Sector: 1. Remain a large region for the possibility of LDM (Ex: Dark Sectors) 2. Other interactions, or interacted with electrons K. Olive et al . (Particle Data Group), Chin. Phys. C 38 , 090001 (2014). P. 29 R. Essig, J. A. Jaros, W. Wester, P. H. Adrian, S. Andreas et al ., arXiv:1311.0029.

  30. Scattering Diagrams and Detector Response Detected Signals 3 2 1 • elastic scattering, excitation, ionization • electron recoils (ER) or nucleus recoils (NR) 1. The particle-detector interaction dσ / dT for the primary scattering process 2. 3. The following energy loss mechanism P. 30

Recommend


More recommend