inverse gamma distribution
play

Inverse gamma distribution STAT 587 (Engineering) Iowa State - PowerPoint PPT Presentation

Inverse gamma distribution STAT 587 (Engineering) Iowa State University September 17, 2020 Inverse gamma distribution Probability density function Inverse gamma distribution The random variable X has an inverse gamma distribution with shape


  1. Inverse gamma distribution STAT 587 (Engineering) Iowa State University September 17, 2020

  2. Inverse gamma distribution Probability density function Inverse gamma distribution The random variable X has an inverse gamma distribution with shape parameter α > 0 and scale parameter β > 0 if its probability density function is β α Γ( α ) x − α − 1 e − β/x I( x > 0) . f ( x ) = where Γ( α ) is the gamma function, � ∞ x α − 1 e − x dx. Γ( α ) = 0 We write X ∼ IG ( α, β ) .

  3. Inverse gamma distribution Probability density function - graphically Inverse gamma probability density function Inverse gamma random variables scale = 0.5 scale = 1 scale = 2 0.25 0.20 shape = 0.5 0.15 0.10 Probablity density function, f(x) 0.05 0.00 0.3 shape = 1 0.2 0.1 0.0 0.4 shape = 2 0.2 0.0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 x

  4. Inverse gamma distribution Mean and variance Inverse gamma mean and variance If X ∼ IG ( α, β ) , then � ∞ x β α β Γ( α ) x − α − 1 e − β/x dx = · · · = E [ X ] = α − 1 , α > 1 0 and � 2 � ∞ � β β α Γ( α ) x − α − 1 e − β/x dx V ar [ X ] = x − 0 α − 1 β 2 = · · · = α > 2 . ( α − 1) 2 ( α − 2) ,

  5. Inverse gamma distribution Relationship to gamma distribution Relationship to gamma distribution If X ∼ Ga ( α, λ ) where λ is the rate parameter, then Y = 1 X ∼ IG ( α, λ ) .

  6. Inverse gamma distribution Summary Summary Inverse gamma random variable X ∼ IG ( α, β ) , α, β > 0 β α Γ( α ) x − α − 1 e − β/x , x > 0 f ( x ) = β E [ X ] = α − 1 , α > 1 β 2 V ar [ X ] = ( α − 1) 2 ( α − 2) , α > 2

Recommend


More recommend