introduction to magnetism part ii magnetization reversal
play

Introduction to magnetism Part II Magnetization reversal Olivier - PowerPoint PPT Presentation

Introduction to magnetism Part II Magnetization reversal Olivier Fruchart Institut Nel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Nel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/


  1. Introduction to magnetism Part II – Magnetization reversal Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  2. Sep.2011: next European School on Magnetism (ESM). Romania. http://esm.neel.cnrs.fr Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.2 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  3. → Introduction to magnetism – Magnetization reversal ToC 1. Energies and length scales in magnetism 2. Single-domain magnetization reversal 3. Magnetostatics 4. Magnetization reversal in materials 5. Recent ways for reversing magnetization Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.3 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  4. 1. ENERGIES AND LENGTH SCALES – Hysteresis and magnetic materials Manipulation of magnetic materials:  Application of a magnetic field S pontaneous ≠ S aturation = − µ E H.M Zeeman energy: Z 0 s Spontaneous magnetization M s Remanent magnetization M r Another notation M M J s = 0 M s Coercive field H c Hext Hext Losses ∫ = µ E H d M 0 ext Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.4 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  5. 1. ENERGIES AND LENGTH SCALES – Soft and hard magnetic materials Soft materials Hard materials M M Hext Hext Transformers Flux guides, sensors Permanent magnets, motors Magnetic shielding Magnetic recording Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.5 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  6. 1. ENERGIES AND LENGTH SCALES – Origins of magnetic energy Echange energy Magnetocrystalline anisotropy energy = − E J S . S 1 2 Ech 1 , 2 M = ∇ θ 2 A ( ) = θ sin 2 E K ( ) mc Hext Zeeman energy (enthalpy) Dipolar energy 2 1 1 = − µ E M . H S d = − µ d 0 E M . H 2 S Z 0 Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.6 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  7. 1. ENERGIES AND LENGTH SCALES – Magnetic characteristic length scales Typical length scale: Numerical values Bloch wall width  B = λ π A / K B λ = − λ B ≥ 2 3 nm 100 nm B Hard Soft ( ) 2 = θ + θ 2 e A d / dx K sin Exchange Anisotropy J/m 3 J/m Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.7 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  8. 1. ENERGIES AND LENGTH SCALES – Magnetic domains Bulk material Mesoscopic scale Nanometric scale Numerous and complex Small number of domains, Magnetic magnetic domains simple shape single-domain Microfabricated dots Kerr magnetic imaging Co(1000) crystal – SEMPA A. Hubert, Magnetic domains A. Hubert, Magnetic domains R.P. Cowburn, Nanomagnetism ~ mesoscopic magnetism J.Phys.D:Appl.Phys.33, R1 (2000) Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.8 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  9. → Introduction to magnetism – Magnetization reversal ToC 1. Energies and length scales in magnetism 2. Single-domain magnetization reversal 3. Magnetostatics 4. Magnetization reversal in materials 5. Recent ways for reversing magnetization Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.9 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  10. 2. SINGLE-DOMAIN REVERSAL – Coherent rotation (1/4) Framework = M = m ) ( r Cte Approximation : (strong!) H [ ] θ H 2 = θ − µ θ − θ E V K sin M H cos( ) tot ext eff 0 S H = + K K K mc d eff θ M Dimensionless units: sin 2 = θ − θ − θ =   e ( ) 2 h cos( ) e E / VK H   = h H / H a   = µ H 2 K / M   a 0 S L. Néel, Compte rendu Acad. Sciences 224, 1550 (1947) E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Royal. Soc. London A240, 599 (1948) IEEE Trans. Magn. 27(4), 3469 (1991) : reprint Names used  Uniform rotation / magnetization reversal  Coherent rotation / magnetization reversal  Macrospin etc. Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.10 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  11. 2. SINGLE-DOMAIN REVERSAL – Coherent rotation (2/4) ( ) sin 2 = θ + θ θ = 180 ° H>0 e ( ) 2 h cos( ) H Equilibrium states ∂ ∂ e e ( ) = ⇒ θ = = θ θ − 0 cos( ) h 2 sin cos h m ∂ θ ∂ θ -90° 0° 90° 180° 270° [ ] θ ≡ π 0 Stability 2 ∂ e 2 ∂ e = − ( 0 ) 2 ( 1 h ) = θ − θ 2 cos 2 2 h cos 2 ∂ θ 2 ∂ θ 2 ∂ e 2 = θ − − θ 4 cos 2 2 h cos 2 θ = − ( ) 2 ( h 1 ) m 2 ∂ θ 2 ∂ e π = + ( ) 2 ( 1 h ) 2 ∂ θ Energy barrier Switching ∆ = θ − e e ( ) e ( 0 ) max 2 2 = − + − 1 h 2 h 2 h = h 1 ( ) 2 = = µ = − H H 2 K / M 1 h a 0 s  with exponent 1.5 in general  1 − h  Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.11 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  12. 2. SINGLE-DOMAIN REVERSAL – Coherent rotation (3/4) EASY ~ HARD ‘Astroid’ curve H H 90 θ H ( ) 120 60 Sw H Hard axis H = 0 -90° 0° 90° 180° 270° -90° 0° 90° 180° 270° 150 30 1 H = 0.2 Ha = H ( ) 180 0 Sw 3 / 2 Easy axis Easy axis 2 / 3 2 / 3 θ + θ sin cos H H 210 330 H = 0.7 Ha Hard axis 240 300 270 H = Ha 1  H Sw (θ) is a signature of = H ( ) Sw 3 / 2 reversal modes 2 / 3 2 / 3 θ + θ sin cos H H J. C. Slonczewski, Research Memo RM 003.111.224, IBM Research Center (1956) Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.12 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  13. 2. SINGLE-DOMAIN REVERSAL – Coherent rotation (4/4) Switching field = Reversal field 1 M A value of field at which an irreversible (abrupt) jump of magnetization angle occurs. 0 Can be measured only in single particles. 90° 70° 0° Coercive field 10° 45° 30° -1 The value of field at which M.H = 0 (  H ±  ) -1.5 -1 -0.5 0 0.5 1 1.5 h A quantity that can be measured in real 1 = h materials (large number of ‘particles’). ( ) Sw 3 / 2 2 / 3 2 / 3 θ + θ sin cos H H May be or may not be a measure of the mean 1.0 switching field at the microscopic level Normalized field 0.8 Reversal field Reversal field 90 Hard 0.6 135 45 Coerciv Coercive 0.4 Coercive Easy e field field 180 0 0.2 field 1 = θ h Abs (sin 2 ) Easy c H 2 0.0 0 45 90 135 180 225 315 Angle Hard 270 Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.13 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  14. 2. SINGLE-DOMAIN REVERSAL – Coherent rotation, experimental relevance (1/2) Experimental evidence First evidence: W. Wernsdorfer et al., 0.3 Phys. Rev. Lett. 78, 1791 (1997) 0.04K 0.2 0.1 µ 0 H z (T) 0 -0.1 -0.2 -0.3 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 M. Jamet et al., Phys. Rev. Lett., 86, 4676 (2001) µ 0 H y (T) Extensions: 3D, arbitrary anisotropy etc. M. Jamet et al., PRB69, 024401 (2004) A. Thiaville et al., PRB61, 12221 (2000) Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.14 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  15. 2. SINGLE-DOMAIN REVERSAL – Experimental relevance (2/2) Size-dependent magnetization reversal Size in micrometers Astroids of flat magnetic elements with increasing size Conclusion over coherent rotation  The simplest model  Fails for most systems because 0.2x0.5 0.37x0.75 they are too large: apply model with great care!..  Hc<<Ha for most large systems (thin films, bulk): do not use Hc to estimate K! Early known as Brown’s paradox 0.2x0.75 0.27x1.37 J. Z. Sun et al., Appl. Phys. Lett. 78 (25), 4004 (2001) Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.15 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

Recommend


More recommend