intention interleaving via classical replanning
play

Intention Interleaving Via Classical Replanning Mengwei Xu , Kim - PowerPoint PPT Presentation

Intention Interleaving Via Classical Replanning Mengwei Xu , Kim Bauters, Kevin McAreavey, Weiru Liu Extending Belief-Desire-Intention (BDI) Agents to Managing Intention Interleaving Intention Resolution: to avoid negative interference Guarantee


  1. Intention Interleaving Via Classical Replanning Mengwei Xu , Kim Bauters, Kevin McAreavey, Weiru Liu

  2. Extending Belief-Desire-Intention (BDI) Agents to Managing Intention Interleaving Intention Resolution: to avoid negative interference Guarantee the achievability of intentions when interleaving the steps in different intentions Intention Merging: to facilitate positive interference Perform one task once for at least two goals, i.e. โ€œkill two birds with one stoneโ€

  3. Motivation to Manage Intention Interleaving Intention Resolution Careless interleaving could result in that neither of its intention can be completed.

  4. Motivation to Manage Intention Interleaving Intention Merging ๐ป ! TransmitSoilResults ๐‘ " ๐‘ ! ๐‘ $ EstablishConnection BreakConnection SendSoilResults execute them once for both intentions ๐‘ # ๐‘ ! ๐‘ $ EstablishConnection SendImageResults BreakConnection ๐ป " TransmitImageResults

  5. Belief-Desire-Intention: Literature Software Platforms Jason [Bordini et al., 2007] Logics Jack [Winikoff, 2005] [Cohen & Levesque, 1990] Jadex [Pokahr et al., 2013] [Rao & Georgeff, 1991] [Shoham, 2009] Programming Languages AgentSpeak [Rao, 1996] CAN [Winikoff et al., 2002] CANPLAN [Sardina et al., 2011]

  6. BDI Agent โ„ฌ, ฮ›, ฮ  Plan library Initial belief base Set of plan rules Belief base specifying agentโ€™s initial beliefs Action library Set of STRIPS-style action descriptions

  7. BDI Agent โ„ฌ, ฮ›, ฮ  Initial belief base Belief base specifying agentโ€™s initial beliefs Belief base โ„ฌ โŠ† โ„’ Set of formulas from logical language โ„’ โ„ฌ must support: โ€ข โ„ฌ โŠจ ๐œ’ (Entailment) โ€ข โ„ฌ โˆช ๐œ’ (Addition) โ€ข โ„ฌ โˆ– ๐œ’ (Deletion) Assume โ„ฌ is a set of atoms

  8. CAN: Agent โ„ฌ, ฮ›, ฮ  Action library Set of STRIPS-style action descriptions Action description act โˆถ ๐œ’ โ† โ„ฌ # ; โ„ฌ $ Set of โ€œaddโ€ atoms โ„ฌ " โŠ† โ„’ Primitive action symbol Set of โ€œdeleteโ€ atoms โ„ฌ ! โŠ† โ„’ Precondition ๐œ’ โˆˆ โ„’

  9. BDI Agent โ„ฌ, ฮ›, ฮ  Plan library Set of plan rules ๐‘ซ๐’‘๐’๐’–๐’‡๐’š๐’– ๐‘ธ : ๐œ’ โˆˆ โ„’ body ๐‘ธ : โ„Ž ! ; โ‹ฏ ; โ„Ž % ๐‘ฐ๐’‡๐’ƒ๐’† ๐‘ธ : ๐ป Formula from โ„’ e.g. a sequence of actions or goals e.g. new goal Plan rule P = ๐ป: ๐œ’ โ† โ„Ž % ; โ‹ฏ ; โ„Ž &

  10. BDI Operational Mechanism Sketch ๐ป โˆถ ๐œ’ !! โ† ๐‘„ ๐ป โˆถ ๐œ’ ! โ† ๐‘„ !! ! ๐ป โˆถ ๐œ’ "! โ† ๐‘„ ๐ป โˆถ ๐œ’ " โ† ๐‘„ "! select " select Goal ๐ป ๐ป โˆถ ๐œ’ #! โ† ๐‘„ Relevant Plans ๐ป โˆถ ๐œ’ # โ† ๐‘„ Applicable Plans #! # โ‹ฎ โ‹ฎ ๐ป โˆถ ๐œ’ %! โ† ๐‘„ ๐ป โˆถ ๐œ’ % โ† ๐‘„ %! % โŠ† ฮ  where ๐“’ โŠจ ฯ† ๐’Œ๐Ÿ , ๐‘˜ โˆˆ 1, โ‹ฏ , ๐‘œ repeat for the subgoals A tree structure representing all possible ways of achieving a goal ๐ป

  11. Our Intention Interleaving Framework in BDI 1. Intention Formalisation โ€ข Model an intention as an AND/OR graph โ€ข Define the execution trace for multiple intentions โ€ข Define the conflict-free and maximal-merged execution trace for multiple intentions 2. Intention Interleaving Planning Preparation โ€ข Indexing nodes โ€ข Defined terminal, initial node sets, and progression links of intentions โ€ข Computing overlapping programs between multiple intentions 3. Intention Interleaving Planning Formalism โ€ข Formalise FPP problem of interleaving intentions โ€ข Correctness Proof 4. Implementation 5. Evaluation

  12. AND/OR Graphs for Intentions ๐‘„ ! = ๐ป ! : ๐œ’ ! โ† ๐‘ ! ; ๐‘ " ; ๐‘ $ ๐‘„ " = ๐ป " : ๐œ’ " โ† ๐‘ ! ; ๐‘ # ; ๐‘ $ OR-nodes OR-edges AND-nodes AND-edges OR-nodes

  13. Execution Trace for An Intention To identifies every unique way in which a given intention can be achieved ๐œ ! ๐‘ˆ " = ๐ป " ; ๐‘„ " ; ๐‘ # ; ๐‘ $ Execution trace for ๐‘ˆ ! : ๐œ ๐‘ˆ ! = ๐ป ! ; ๐‘„ ! ; ๐‘ ! ; ๐‘ " ; ๐‘ $ Execution trace for ๐‘ˆ # : ๐œ % ๐‘ˆ " = ๐ป " ; ๐‘„ # ; ๐‘ # ; ๐‘ $ ; ๐‘ &

  14. Execution Trace for Multiple Intentions The construction of an execution trace of a set of intentions is to interleave elements in the execution traces of different intentions Potential execution trace for ๐‘ˆ % and ๐‘ˆ H : ๐œ = ๐‘ฏ ๐Ÿ ; ๐‘ธ ๐Ÿ ; ๐ป H ; ๐‘„ H ; ๐’ƒ ๐Ÿ ; ๐‘ J ; ๐’ƒ ๐Ÿ‘ ; ๐’ƒ ๐Ÿ“ ; ๐‘ M by interleaving ๐œ ๐‘ˆ ! = ๐‘ฏ ๐Ÿ ; ๐‘ธ ๐Ÿ ; ๐’ƒ ๐Ÿ ; ๐’ƒ ๐Ÿ‘ ; ๐’ƒ ๐Ÿ“ and ๐œ ! ๐‘ˆ # = ๐ป # ; ๐‘„ # ; ๐‘ $ ; ๐‘ *

  15. Execution Trace for Intentions (Cont.) Conflict-free Execution Trace: To model the successful interleaving which achieves all intentions ๐œ 1 ๐œ 2 โ‹ฏ ๐œ ๐‘˜ โˆ’ 1 ๐œ ๐‘˜ ๐œ ๐‘˜ + 1 ๐œ ๐‘œ โ‹ฏ โ„ฌ ! โ„ฌ " โ„ฌ โ„ฌ โ„ฌ % โ„ฌ +,! +-! + + is the belief base before the execution of the ๐‘˜ ./ element of an execution trace (i.e. ๐œ ๐‘˜ ) where โ„ฌ An execution trace ๐œ is conflict-free if and only if the following hold: 1. if ๐œ ๐‘˜ = ๐‘„ โˆˆ ฮ  , then โ„ฌ ' โŠจ ๐‘‘๐‘๐‘œ๐‘ข๐‘“๐‘ฆ๐‘ข(๐‘„) , i.e. the context of plan ๐‘„ must be met before selection 2. if ๐œ ๐‘˜ = ๐‘ โˆˆ ฮ› , then โ„ฌ ' โŠจ ๐œ”(๐‘) , i.e. the pre-condition of action `๐‘โ€ฒ must be met before selection

  16. Execution Trace for Intentions (Cont.) Mergeable Execution Trace of ๐‘ผ ๐Ÿ , โ‹ฏ , ๐‘ผ ๐’ To capture the overlapping programs of different intentions ๐‰: ๐œ ๐‘œ ๐œ 1 ๐œ 2 ๐œ ๐‘˜ ๐œ ๐‘˜ + 1 โ‹ฏ ๐œ ๐‘˜ + ๐‘™ โˆ’ 1 ๐œ ๐‘˜ + ๐‘™ โ‹ฏ โ‹ฏ ๐‘™ consecutive same element from all difference intentions in ๐œ ๐‰ ๐’ : ๐œ 1 ๐œ ๐‘˜ ๐œ ๐‘˜ + ๐‘™ + 1 ๐œ ๐‘œ โ‹ฏ โ‹ฏ ๐œ 2 An execution trace ๐œ is a mergeable execution trace if and only if the following hold: 1. โˆƒ๐‘˜ โˆˆ 1, โ‹ฏ , ๐‘œ such that ๐œ ๐‘˜ = ๐œ ๐‘˜ + 1 = โ‹ฏ ๐œ ๐‘˜ + ๐‘™ where 2 โ‰ค ๐‘™ โ‰ค ๐‘œ โˆ’ ๐‘˜ ; 2. โˆ€๐‘š โˆˆ 1, โ‹ฏ , ๐‘› , โˆ„๐‘ก, ๐‘ข โˆˆ ๐‘˜, โ‹ฏ , ๐‘˜ + ๐‘™ where ๐‘ก โ‰  ๐‘ข such that ๐œ ๐‘ก โŠ† ๐œ ๐‘ˆ * โŠ† ๐œ and ๐œ ๐‘ข โŠ† ๐œ ๐‘ˆ * โŠ† ๐œ ; ๐œ + is a conflict-free execution trace where ๐œ + is the merged execution trace of ๐œ by reducing each 3. subsequence consisting of consecutive identical elements characterized by 1 and 2 in ๐œ to only one element left.

  17. Execution Trace for Intentions (Cont.) Maximal-merged Trace of ๐‘ผ ๐Ÿ , โ‹ฏ , ๐‘ผ ๐’ To capture the most merged execution trace of multiple intentions The merged execution trace ๐œ + of a mergeable execution trace ๐œ of ๐‘ˆ ! , โ‹ฏ , ๐‘ˆ + is maximal-merged if there is no another mergeable execution trace ๐œ , of ๐‘ˆ + such that ๐œ ,+ < ๐œ + where ! , โ‹ฏ , ๐‘ˆ ๐œ stands for the length of ๐œ . the potential maximal-merged trace of ๐‘ˆ ! , ๐‘ˆ " ๐œ 1 = ๐ป ! ; ๐‘„ ! ; ๐ป " ; ๐‘„ " ; ๐‘ ! ; ๐‘ " ; ๐‘ # ; ๐‘ $ Perform action a ! and a $ once for both two goals ๐‘ˆ ! and ๐‘ˆ "

  18. Indexing Nodes To ensure that e.g. the same actions in distinct plans is seen as different ๐‘ˆ W ๐‘œ A node ๐‘œ is a top-level goal of intention ๐‘ˆ : ๐‘œ 2,+,4 to denote the ๐‘˜ ./ member of ๐‘๐‘๐‘’๐‘ง(๐‘„) in ๐‘ˆ The nodes of actions and subgoals of intention ๐‘ˆ : ๐‘œ 4 A plan node in intention ๐‘ˆ : ๐‘จ 5 = ๐‘ˆ ! W ๐‘œ , โ‹ฏ , ๐‘ˆ 1 W ๐‘œ Initial node set for intentions ๐‘ˆ ! , โ‹ฏ , ๐‘ˆ 1 : a collection of the last element of each execution trace of a goal Terminal node set for a goal node: ๐‘จ 6 = ๐‘ข๐‘œ ! , โ‹ฏ , ๐‘ข๐‘œ 1 where ๐‘ข๐‘œ 7 is a terminal node of ๐‘ˆ 7 W ๐‘œ Terminal node set for intentions I = ๐‘ˆ ! , โ‹ฏ , ๐‘ˆ 1 ๐‘จ 6 โŠณ .% ๐ฝ if ๐‘จ 6 is a terminal node set of ๐ฝ

  19. Progression Links To visualise the progression order of execution elements in the context of indexes The progression links of execution trace ๐œ(๐‘ˆ " ) The progression links of execution trace ๐œ(๐‘ˆ ! ) 4 4 (๐‘ˆ " (W ๐‘œ) โ†’ ๐‘„ " ) (๐‘ˆ ! (W ๐‘œ) โ†’ ๐‘„ ! ) " ! " โ†’ ๐‘ !2 " ,!,4 ! โ†’ ๐‘ !2 ! ,!,4 4 4 (๐‘„ " ) (๐‘„ ! ) " ! They are also called primitive progression links " โ†’ ๐‘ #2 " ,",4 ! โ†’ ๐‘ "2 ! ,",4 (๐‘ !2 " ,!,4 " ) (๐‘ !2 ! ,!,4 ! ) " โ†’ ๐‘ $2 " ,#,4 ! โ†’ ๐‘ $2 ! ,#,4 (๐‘ #2 " ,",4 (๐‘ "2 ! ,",4 " ) ! )

Recommend


More recommend