intense lasers high peak power part 2 propagation
play

Intense lasers: high peak power Part 2: Propagation Bruno Le Garrec - PowerPoint PPT Presentation

Intense lasers: high peak power Part 2: Propagation Bruno Le Garrec Directeur des Technologies Lasers du LULI LULI/Ecole Polytechnique, route de Saclay 91128 Palaiseau cedex, France bruno.le-garrec@polytechnique.edu 31/08/2016 Bruno Le


  1. Intense lasers: high peak power Part 2: Propagation Bruno Le Garrec Directeur des Technologies Lasers du LULI LULI/Ecole Polytechnique, route de Saclay 91128 Palaiseau cedex, France bruno.le-garrec@polytechnique.edu 31/08/2016 Bruno Le Garrec page LPA school Capri 2017 1

  2. CNE400 : half kilojoule laser Continuum - National Energetics Bruno Le Garrec page LPA school Capri 2017 2

  3. CNE400: 1.5 m x 6 m Bruno Le Garrec page LPA school Capri 2017 3

  4. CNE400 CNE400 is delivering 200 J @ 527 nm @ 1 shot/mn rep-rate (and 300J IR) • Beam diameter 60 mm, low divergence (< 0,2 mrad) and poyntingstability =22 microrads RMS) • Pulse shaping capability: 40 ns • Phase modulation for smoothing purpose (« SSD ») • Deformable mirror • T. Ditmire et al (2014), CLEO 2014, Technologies for high intensity (STU3F), doi:10.1364/CLEO_SI.2014.STu3F.1 Bruno Le Garrec page LPA school Capri 2017 4

  5. Next step: L4 for ELI-Beamlines • 2 main amps : 1 multipass 180 mm + 1 booster 300 mm • Mixed silicate and phosphate laser glasses • Expected up to 2 kJ stretched – 1.5 kJ compressed to 150 fs 1.7 kJ To compressor 2 Power Amplifiers ns OPCPA Front-end ps OPCPA Stretcher + Pulse cleaner Bruno Le Garrec page LPA school Capri 2017 5

  6. Multiple pass amplifier with adaptive optic Deformable Disks amplifier Lens Mirror Pinhole 1 st & 3 rd pass 2 nd & 4 th pass • It can be shown that this configuration is the best one for correcting the wave front • Both NIF and LMJ prototype (LIL facility) have achieved more than 85% THG efficiency • Both NIF and LMJ prototype (LIL facility) can fire every 2 hours (amplifier slabs are not cooled) • LLE (OMEGA EP) while using this type of amplifier with water cooled lamps (but still un-cooled slabs) can fire every hour. Bruno Le Garrec page LPA school Capri 2017 6

  7. Wavefront Correction • Wavefront distortions are coming from: – Dynamic aberrations from thermal effects in the amplifiers – Static aberrations from optical components • Deformable mirror & spatial filtering MDA MDA MDA M2 M2 M2 MdT2 MdT2 MdT2 LdT LdT LdT MdT1 MdT1 MdT1 WAVEFRONT WAVEFRONT WAVEFRONT MT1 MT1 MT1 SENSOR SENSOR SENSOR AMPLIFIER AMPLIFIER AMPLIFIER 9 LASER GLASS 9 LASER GLASS 9 LASER GLASS FST FST FST L4 L4 L4 Mi5 Mi5 Mi5 SLABS SLABS SLABS Mi4 Mi4 Mi4 AMPLIFIER AMPLIFIER AMPLI Li Li Li 9 LASER GLASS 9 LASER GLASS 9 LASER GLASS L3 L3 L3 Mi3 Mi3 Mi3 SLABS SLABS SLABS toward3 w section toward3 w section toward3 w section Mi2 Mi2 Mi2 L2 L2 L2 Mi1 Mi1 Mi1 L1 L1 L1 COMPUTER COMPUTER COMPUTER DFM DFM Bruno Le Garrec page LPA school Capri 2017 7

  8. Wavefront correction loop Open or close Loop Wavefront correction sofware Reference Source at FST4 Wavefront sensor Section Transport Deformable Mirror 30-mn Stability Section Conversion en fréquence et Focalisation Bruno Le Garrec page 8

  9. Wavefront Correction FST1 = Ab INJ FST2 = Ab INJ + 2 Ab AMPLI FST3 = Ab INJ + 2 Ab AMPLI + 2 Ab DT FST4 = Ab INJ + 4 Ab AMPLI + 2 Ab DT When applying the correction - ( Ab INJ + 4 Ab AMPLI + 2 Ab DT )/2 to the deformable mirror, one gets: FST1 = Ab INJ FST2 = ½ Ab INJ – Ab DT FST3 = ½ Ab INJ + Ab DT FST4 = 0. Injection Ampli FST1 M1 Δϕ = 53,9 rad FST2 Ampli Demi-tour M2 FST3 Ampli M1 FST4 Ampli Bruno Le Garrec page LPA school Capri 2017 9

  10. Solid State Heat Capacity Laser* • 2006 : 67 kW using 5 ceramic Nd:YAG slabs, 10 cm aperture • average output power in a ½ second burst mode, 500 microsecond pulse width, 200 Hz • Efficiency not known • Beam quality not known but 2 x DL at 10 kW. How much at 67 kW ? • Main trouble : pump uniformity of the diode arrays • *R.YAMAMOTO SPIE, 6552, 655205 (2007) Bruno Le Garrec page LPA school Capri 2017 10

  11. Disk Laser Face-pumped by 2D-stack Diode Arrays* • 27 kW pump power per disk (6.75 J) at 400 Hz (10% duty cycle) => 2.7 kW average power • Diode efficiency at 120 A = 50% • 1 to 5 disks : 40 mm Nd:YAG • Typical 26% optical efficiency at 3.24 kW output (5 disks) with 8x DL • C. TANG et al, SPIE, 7131 , 713113 (2009) Bruno Le Garrec page LPA school Capri 2017 11

  12. Conclusion /1 • None of the diode-pumped solid-state lasers have been able to reach the kW level (100 J @ 10 Hz) • DPSSL nearby the kW level have a moderate efficiency (<5 %) lower than expected • Flash lamp pumped fusion lasers are still in the run with a low efficiency (0.5 to 1%) – But can access > 85% SHG/THG • A flash lamp pumped amplifier with flow-cooled plates can run at 1 shot/mn – At low efficiency – 200J frequency doubled flash lamp pumped laser • High average power is an engineering problem : – Solve the thermal problem at first – Optimize the heat exchange coefficient – Work at low temperature Bruno Le Garrec page LPA school Capri 2017 12

  13. Conclusion /2 • Use adaptive optics (deformable mirrors associated with pinholes) => better M 2 factors • Cool the amplifier medium to cryogenic temperature => increase optical efficiency and thermo-mechanical properties – Cryogenic temperature : at 77 K, the thermal conductivity of un-doped YAG is greater than 70 W/m.K (almost 7 times the 300 K value). Some early data were close to 100 W/m.K – According to D. Brown, the extractable power can be increased by a factor 4 to 5 between 300 and 77 K but the typical heat flux coefficient h fall in the range 1-10 W/cm 2 .K for water cooling at room temperature and is a little bit less for liquid N 2 at 77K. • Use wide angular acceptance crystals => access high frequency conversion with moderate M 2 factors Bruno Le Garrec page LPA school Capri 2017 13

  14. References J. EMMETT et al, “The potential of high-average-power solid state lasers”, UCRL 53571, LLNL (1984) D.C. BROWN, “Ultrahigh-average_power diode-pumped Nd:YAG and Yb:YAG Lasers,” IEEE J. Quantum Electron. , 33 , no.5 (1997) W. KOECHNER, Solid-state laser engineering , 5th ed., Springer, Ed., (1999). T. NUMAZAWA, O. ARAI, Q. Hu and T. Noda, “Thermal Conductivity Measurements for Evaluation of Crystal Perfection at Low Temperatures,” Meas. Sci. Technol. 12 , 2089-2094 (2001) D.C. BROWN, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Topics Quantum Electron. , 11 , no.3 (2005) R.M. YAMAMOTO et al, “Evolution of a Solid State Laser,” Proc. of SPIE, vol. 6552, 655205 (2007) T.Y. FAN et al, “Cryogenic Yb 3+ -Doped Solid-State Lasers,” IEEE J. Sel. Topics Quantum Electron. , 13 , no.3 (2007) D.C. BROWN et al, “Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser,” Proc. of SPIE, vol. 6952, 69520K (2008) C. TANG et al, “High-Average Power Disk Laser Face-pumped by 2D-stack Diode Arrays”, Proc. of SPIE, vol. 7131, 713113 (2009) S.G. GRECHIN and P.P. NIKOLAEV, “Diode-side-pumped laser heads for solid-state lasers”, Quantum Electronics 39 (1) 1-17 (2009) B. Le Garrec (2014) High Power Laser Science and Engineering, volume 2, e28 doi:10.1017/hpl.2014.33 T. Ditmire et al (2014), CLEO 2014, Technologies for high intensity (STU3F), doi:10.1364/CLEO_SI.2014.STu3F.1 Bruno Le Garrec page LPA school Capri 2017 14

Recommend


More recommend