Integration of beam and near detector Milind Diwan 1/21/2017
Outline • Reminder of the requirements and numerical consequences. • Current near site layout and driving requirements • Issues • Physics analysis model for guiding the near detector. • Beam tunability • Muon rangeout distance • Near detector location choices • Near detector evolution • Update to ND requirements ?
DUNE ND requirements Osc . freq = (1/ 500) km / GeV Sampling > 2 × Osc . freq • The current set of broadly written electron % syst scientific requirements are in bin events req=stat/2 DOCDB-112. 0-0.8 GeV 60 6% 0.8-1.7 130 4% GeV 1.7-2.6 • This was covered in the CD1(R) 540 2% GeV and CD3a reviews. 2.6-5.2 380 2.5% GeV >5.2 GeV ~150 4% • The ¡Near ¡Detector ¡Complex ¡measurements ¡shall ¡ be ¡sufficiently ¡precise ¡and ¡accurate ¡that ¡the ¡long-‑ baseline ¡neutrino ¡oscilla<on ¡analysis ¡capability ¡ shall ¡be ¡limited ¡by ¡the ¡sta<s<cs ¡of ¡the ¡planned ¡ exposure ¡and ¡the ¡systema<c ¡uncertain<es ¡of ¡the ¡ far ¡detector. ¡ muon statistical bin events error 0-0.8 GeV 600 4% • The ¡near ¡neutrino ¡detector ¡shall ¡be ¡placed ¡on ¡axis ¡ 0.8-1.7 2000 2.2% with ¡the ¡neutrino ¡beam; ¡it ¡shall ¡be ¡placed ¡ GeV sufficiently ¡far ¡to ¡sa<sfy ¡two ¡condi<ons: ¡ ¡all ¡muon ¡ 1.7-2.6 670 4% GeV flux ¡from ¡the ¡beam ¡should ¡be ¡absorbed ¡before ¡the ¡ 2.6-5.2 5500 1.3% neutrino ¡beam ¡reaches ¡the ¡near ¡detector, ¡and ¡the ¡ GeV uncertain<es ¡due ¡to ¡beam ¡spectrum ¡comparison ¡ >5.2 GeV ~2000 2.2% between ¡far ¡and ¡near ¡should ¡be ¡highly ¡ constrained. ¡ ¡ It is worth reading the requirements, commenting on them, and looking at how to satisfy them or not. They need to be made numerical with a specific design !
Summary of needed accuracy Given 1300 km, the broad band event spectrum will need to be measured with • energy resolution better than ~0.5 GeV. The systematic error on the prediction of electron neutrino spectrum should • ultimately be ~2-5% per bin. But this will change over time as 1/ Sqrt[exposure]. The systematical error on the prediction of unoscillated muon neutrino • spectrum should be ~2% across all bins. Muon energy resolution and scale is very important to determine the Delta-m 2, • but the shape allows significant reduction in the requirement. The energy resolution is crucial for mixing angle resolution. Both electron and muon spectra have to be analyzed together to perform the • CP fits because they depend on the location of the “node” which depends on Delta-m 2 and so both muon and electron systematic errors have to be achieved simultaneously.
Near Site Overview The ND placement requirement has been interpreted to mean that the ND should be as far as possible on site. TRUE ¡ NORTH 5 10.19.16 T. Hamernik | Current NSCF Near Detector Design LBNF/DUNE
Near Site Profile LBNE DocDB 11180: The near detector location is 574 m from the target station based on the requirement that it be placed as far away as possible to obtain the smaller ND/FD flux ratio. 6 10.19.16 T. Hamernik | Current NSCF Near Detector Design LBNF/DUNE
-2 s -1 ) Downstream Absorber Hall Muon/Hadron Fluxes (cm Assumption is 120 GeV with 2.4 MW Soil Soil Rock Rock ND Hadrons Muons L=459m, Z=456.7 m Z=417m, S rock =170 m Z=326.8 m, S rock =80 m (previous location of ND) Ground-water design goal 7 MARS Energy Deposition & Radiological, N. Mokhov Jan/2015 absorber review
Muon/Hadron Fluxes (cm -2 s -1 ) with Steel Kern. With the muon Kern ND can be placed at z=360 m. 30-‑m ¡steel ¡kern: ¡R 1 =3.5m, ¡R 2 =1.5m Soil Soil Rock Rock ND Hadrons Muons L=459m, Z=456.7 m Z=277 m, S=30 m Z=360m, S=113 m Ground-water design goal MARS Energy Deposition & Radiological, N. Mokhov 8
C A B A. previous muon range out (210 m), B. updated (170m), C. with Muon Kern (113 m). B. Current ND sta. 28+89, Possible nearest location: sta. 22+70. ~(574-188) m = 386 m
ND ¡Neutrino ¡Spectrum ¡ ND ¡at ¡459 ¡m ¡ ¡ CC Spectrum at ND vs FD 120 ¡GeV ¡protons ¡ 10 CC events/GeV/kt/1e20 p.o.t NuMI ¡horns ¡ 9 Unoscillated CC Spectrum at FD ND ¡scaled ¡by ¡(0.459/1300) 2 ¡ 8 CC Spectrum Scaled from ND 7 ND ¡rate ¡~0.1-‑0.2 ¡evts/ton ¡7.5 ✕ 10 13 ¡ 6 5 ~ ¡50 ¡% ¡corrections ¡must ¡be ¡made ¡by ¡ 4 Monte ¡Carlo. ¡ ¡ ¡ µ ν 3 (at ¡574 ¡the ¡correction ¡is ¡smaller ¡~40%) ¡ 2 1 This ¡requires ¡1) ¡Detailed ¡Beam ¡Geometry ¡ 0 Simulation. ¡2) ¡FD/ND ¡simulations. ¡ ¡3) ¡ 0 2 4 6 8 10 E GeV ν Reduction ¡of ¡systematics ¡by ¡exploiting ¡ π-‑lifetime ¡ ¡ ¡ High ¡energy dominated correlations. ¡ ¡ Collimated The apparent average origin of the beam increases upto 4 GeV and then decreases. For the overall beam, the average origin is ~60 meters downstream of target. ND ¡spectrum ¡is ¡narrower ¡than ¡FD ¡due ¡to ¡hadronic ¡distributions, ¡magnetic ¡ • focusing, ¡ ¡decay ¡kinematics. ¡ ¡ NuMI/MINOS ¡technique: ¡data ¡with ¡beam ¡variations ¡can ¡be ¡used ¡to ¡obtain ¡very ¡ • precise ¡ND/FD ¡ratio. ¡ ¡
Summary This extrapolation is energy 0.100 dependent. The precision is mostly dependent on the 1 / Sqrt [ evts ] arb 0.010 systematic error on the event rate in ND1 and the 0.001 ratio of the average origin and the distance between 10 - 4 the two near sites. near sites nd b nd a 10 - 5 This was proposed in 1995 with an off-axis beam 0.1 1 10 100 1000 Distance km • For most precise far detector prediction, use best known cross section for flux (neutrino-electron elastic scattering). 5000 events at 574 m, 15000 events at 360 m. (1.2 MW, 5 tons, 5 yrs) • To obtain the highest event rate for elastic scattering move the ND closer (360 m). This will provide X3 more event rate compared to 574 m. • Precise magnetic muon charge measurement will allow separation of neutrino and antineutrino fluxes. • Initially geometry and Monte Carlo simulations will be enough to provide ND/FD ratio. A second detector at 574 m will eliminate dependence on Monte Carlo. • A flux measurement with elastic scattering and magnetic muon charge measurement could be used to measure cross sections and detector effects in a second detector placed at 574 m.
Recommend
More recommend