integer quantum hall effect
play

Integer Quantum Hall effect basics theories for the quantization - PowerPoint PPT Presentation

Integer Quantum Hall effect basics theories for the quantization disorder in QHS Berry phase in QHS topology in QHS effect of lattice effect of spin and electron interaction Dept of Phys M.C. Chang Hall effect (


  1. Integer Quantum Hall effect • basics • theories for the quantization • disorder in QHS • Berry phase in QHS • topology in QHS • effect of lattice • effect of spin and electron interaction Dept of Phys M.C. Chang

  2. Hall effect ( 1879 ), a classical analysis � � � � � dv v v * = − − × − * m eE e B m τ dt c � � � = = ˆ; / 0 at steady state B Bz dv dt • Hall resistivity ⎛ ⎞ ⎛ ⎞ ⎛ τ ⎞ * / / v E m eB c = − x x ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ e − * τ / / v E ⎝ ⎠⎝ ⎠ ⎝ ⎠ eB c m y y � � = − ⎛ ⎞ j env * m B ⎜ ⎟ ⎛ ⎞ ⎛ ⎞ ω τ ⎛ ⎞ ⎛ ⎞ 1 * τ E 2 j j m eB ne nec ρ = τ ω = ⎜ ⎟ 2 , = = ρ x x x c ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 0 * c 0 − ω τ n e m c ⎜ ⎟ 1 * E j ⎝ ⎠ j ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ B m − y y y c ⎜ ⎟ ⎝ τ ⎠ 2 nec ne ρ xy • Hall conductivity − ω τ ⎛ ⎞ σ 1 τ 2 ne = − = 1 σ ρ 0 c σ = ⎜ ⎟ ( ) ω τ 0 2 1 * B + ω τ ⎝ ⎠ 1 m c c − ω τ ⎛ ⎞ 1 ω τ << ⎯⎯⎯ 1 → σ c ⎜ ⎟ c 0 ω τ 1 ⎝ ⎠ c − ⎛ 0 / ⎞ nec B ω τ >> ⎯⎯⎯ → 1 ⎜ ⎟ c / 0 ⎝ ⎠ nec B

  3. y Resistance and conductance W x L Σ Σ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ V R R I I V = = x xx xy x x xx xy x , ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ Σ Σ V R R I I V ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ y yx yy y y yx yy y Note: So it’s possible to have R xx and Σ xx Σ = yy R simultaneously be zero (provided R xy and Σ xy Σ xx det are nonzero). V E W L W = ρ ≡ = = ρ 3 : y y D R R xx xx yx yx A I J A A = x 0 x I y E W L = ρ = = ρ 2 : y D R R xx xx yx yx W J W x ρ = ρ = 0, . Quantum Hall effect const xx yx ρ 1 1 R → Σ = = = = = σ yx yx ρ ρ yx det det yx R R yx yx

  4. Measurement of Hall resistance 2-dim electron gas (2DEG)

  5. GaAs/AlGaAs heterojunction Dynamics along z- direction is frozen in the ground state subband (broadened) Landau levels in a magnetic μ field Energy

  6. Effect of disorder on σ xy ( theoretical prediction before 1980 ) Si(100) MOS inversion layer 9.8 T, 1.6 K Ando, Matsumoto, and Uemura JPSJ 1975 Kawaji et al, Supp PTP 1975

  7. Quantum Hall effect ( von Klitzing, 1980 ) 1985 ρ xy deviates from (h/e 2 )/n by less than 3 ppm on the very first report. • This result is independent of the shape/size of sample. • Different materials lead to the same effect ( Si MOSFET, GaAs heterojunction …) → a very accurate way to measure α -1 = h/e 2 c = 137.036 (no unit) → a very convenient resistance standard.

  8. An accurate and stable resistance standard (1990) • experiment Kinoshita, • theory Phys. Rev. Lett. 1995

  9. Condensed matter physics is physics of dirt - Pauli clean dirty • Flux quantization h φ = 0 2 e • Quantum Hall effect • … Often protected by topology, but not vice versa.

  10. e The triangle of quantum metrology (to be realized) QCP f I Josephson QHE effect h / e 2 e / h V

  11. Quantum Hall effect requires • Two-dimensional electron gas • strong magnetic field < � ω ( ) k T • low temperature B c Note: Room Temp QHE in graphene ( Novoselov et al, Science 2007 ) Aoki, CMST 2011 Plateau and the importance of disorder Broadened LL due to disorder The importance of localized states Why R H has to be exactly (h/e 2 )/n ? • see Laughlin’s argument below Filling factor

  12. Width of extended states? 256 states in the LLL. ε ( Φ ) periodic in Φ 0 Aoki 1983

  13. • Finite-Size Scaling Exponent for correlation length Huo and Bhatt PRL 1992 − Δ = ν ~ , 1/ 2 x E N x States that can carry Hall current (with non-zero Δ E Δ E Chern number ) Ensemble average over • experiment 100-2000 disorder configurations Li et al PRL 2005

  14. Quantization of Hall conductance , Laughlin’s gauge argument (1981) 1 � 2 ⎛ ⎞ 1 � � � e ∑ = + + + ( ) ( ) ⎜ ⎟ H p A r V r V i i i e e 2 ⎝ ⎠ m c i • Simulate a longitudinal EMF by a fictitious time-dependent flux Φ − ∂ ⎡ ⎤ 1 � � e ∑ e = + ( ) j A r ⎢ ⎥ ∂ x x i ⎣ ⎦ m L L i x c i x y ∂ ∂ c H c H Φ = − = − Φ = A L ∂ ∂Φ L L A L x x x y x y ψ >= ψ > | | H E solve Φ Φ Φ Φ By the Hellman-Feynman theorem, one has y ∂ ∂ ∂ H E x < ψ ψ >= < ψ ψ >= Φ Φ | | | | H Φ Φ Φ Φ Φ ∂Φ ∂Φ ∂Φ ∂ c E ∴ = − Φ x j ∂Φ L y • Due to gauge symmetry, the system needs to be invariant under Φ→ Φ + Φ 0 , • E F at localized states, no charge transfer whatever Φ is. − 2 ( ) V n e e E • E F at extended states, only integer charges may transfer = − = y j c n h Φ x y along y when Φ is changed by one Φ 0. L 0 y

  15. Edge state in quantum Hall system • Classical picture • Bending of LLs Chiral edge state Gapless excitations at the edges (skipping orbit) • Robust against disorder (no back-scattering) • number of edge modes = n

  16. Inclusion of lattice (more details later) • Bulk states: E n (k x ,k y ) (projected to k y ); Edge states: E n (k y ) Figs from Hatsugai’s ppt • when the flux is changed by 1 Φ 0 , the states should come back. → Only integer charges can be transported.

  17. 2 Streda formula ( 1982 ) Nonzero L = ∇ × ˆ c M z along edge R Degeneracy of a LL: D=BA/ Φ 0 • If ν bands are filled, then the number of electrons per unit area is n= ν eB/hc ∴ σ H = ν e 2 /h Giuliani and Vignale, Sec 10.3.3

  18. Current response: conductivity � � ∂ 1 ( ) A t • Vector potential of = − ( ) E t ∂ an uniform electric field c t � � � � � � ω i = − ω = − ω = ( ) , then ( ) ; i t i t E t E e A t A e E A ω ω ω ω c � � 2 ⎛ ⎞ 1 � � e e = + + = + ⋅ + 2 ( ) H ⎜ p A ⎟ V H A p O A 0 latt 2 ⎝ ⎠ m c m c 0 0 � � e − ω = ⋅ ' i t H p A e ω m c 0 = σ • 1st order perturbation in E → j E α αβ β α β − 2 f f v v e ∑ Kubo-Greenwood σ ω = ( ) � � � m m m α β ω ω + ω formula � iV � � � m m m ω ≡ ω − ω α ≡ ψ α ψ , v v � � � � m m m m

  19. 3 Quantization of Hall conductance Thouless et al’s argument (1982) α β − β α 2 1 e p p p p ∑ σ = � � � � ℓ , m = (n, k ) DC m m m m f α ≠ β � ω 2 2 � im V � 0 m � m ⎛ ⎞ ∂ ∂ ∂ ∂ 2 2 u u u u e ∑ α 1 � = − ⎜ ⎟ p nk nk nk nk f ∂ + � = � ⎜ ⎟ m u k u ∂ ∂ ∂ ∂ � nk α α � i V k k k k m ⎝ ⎠ m m i α β β α nk 0 0 ∂ ε ∂ u δ + ω • Berry curvature = � � u � � ∂ ∂ m m m � k k ⎛ ⎞ α α � ∂ ∂ ∂ ∂ u u u u Ω ≡ ⎜ − ⎟ ( ) nk nk nk nk k i ⎜ ⎟ cell-periodic γ ∂ ∂ ∂ ∂ n k k k k ⎝ ⎠ α β β α function u m α β γ ( , , are cyclic) • Berry curvature (for n-th band) • Hall conductivity for the n-th band � � Ω = ∇ × ∇ � ⎡ ⎤ ( ) 2 k i � u � u 1 e ( ) ( ) ∫ n n n σ = Ω 2 k k ( ) ⎢ ⎥ � � d k k π H 2 n = ∇ × n z ( ) h ⎣ ⎦ � A k BZ n k • Berry connection � an integer for a � ≡ ∇ � ( ) A k i u u filled band n n n k

  20. d c � 1 ∫ Ω = 2 ( ) intege r d k k n π 2 z Brillouin B Z zone g y � ∫ ∇ × 2 Pf: d k A a b BZ � � � � � � � � g x ∫ b ∫ c ∫ d ∫ a = ⋅ + ⋅ + ⋅ + ⋅ dk A dk A dk A dk A a b c d ∫ ∫ ⎡ ⎤ ⎡ ⎤ = − + − ( ,0) ( , ) ( , ) (0, ) dk A k A k g dk A g k A k ⎣ ⎦ ⎣ ⎦ x x x x x y y y x y y y → ↑ θ ( ) θ = = ( ) i k , i k 1 u � e y u � u � e 2 u � x + ˆ + ˆ k k g x k k g y x y ∫ ⎡ ⎤ − = θ − θ ( ,0) ( , ) ( ) ( ) dk A k A k g a b ⎣ ⎦ 2 2 x x x x x y → Zeros and vortices � etc θ = ( ) i a u e 1 u � a b ∫ ∇× 2 θ d k A = ( ) i b u e 2 u b c BZ − θ = ( ) i d u e 1 u = θ − θ + θ − θ ( ) ( ) ( ) ( ) a b d a c d 2 2 1 1 − θ = ( ) i a = π u e 2 u 2 n BZ d a total vorticity in the BZ [ ] θ + θ − θ − θ ( ) ( ) ( ) ( ) ∴ = i a b d a 1 2 1 2 u e u a a • Niu-Thouless-Wu generalization to system with disorder and electron interaction (PRB 1985). Czerwinski and Brown, PRS (London) 1991

Recommend


More recommend