instable particles as probes for new physics
play

Instable Particles as Probes for New Physics Searches for APV and - PowerPoint PPT Presentation

SOLVAY WORKSHOP "Beyond the Standard model with Neutrinos and Nuclear Physics" Brussels, November 29th - December 1st, 2017 Instable Particles as Probes for New Physics Searches for APV and EDMs Klaus Jungmann Van Swinderen


  1. SOLVAY WORKSHOP "Beyond the Standard model with Neutrinos and Nuclear Physics" Brussels, November 29th - December 1st, 2017 Instable Particles as Probes for New Physics – Searches for APV and EDMs Klaus Jungmann Van Swinderen Institute, University of Groningen VSI

  2. Searches for Electric Dipole Moments/Parity Violation  Testing the Standard Model with instable Molecules, Atoms and Particles  Discrete Symmetries and their Conservation / Violation  In general : Few Valence Electron Systems - Privileged Heavy Atoms - Advantageous Radioactive Species - Some Opportunities  EDM Searches with Enhancement in Atoms, Molecules (& Some Nuclei)  Perspectives in the Period to Come Due to Technology Advances VSI

  3. Standard Model Tests Standard Model (SM) of particle physics is  Best Theory we have  Still large number of open questions e.g. particle masses, origin of parity violation, .... Direct: Indirect: Searches for New Particles High Precision Measurements  Equivalent Approaches CERN e.g. LHC Small institutes e.g. VSI .. e.g. Discovery of Higgs boson,.. e.g. Atomic Parity Violation, EDM searches , ….. also: Difference Matter-Antimatter … VSI

  4. Discrete Symmetries C,P,T,CP,CPT VSI

  5. An EDM Violates P,T and with CPT also CP VSI

  6. Permanent E lectric D ipole M oment s z s z S + X → Electron: clean and ready for New Physics - → Hadrons: depend on θ QCD in Standard Model VSI

  7. Spin of Fundamental Particles S is the only vector characterizing a non-degenerate quantum state z magnetic moment: m x = 2(1+a x ) m 0x c -1 S s z S + electric dipole moment: X d x =  m 0x c -1 S - magneton: m 0x = e ħ / (2m x ) 9 . 7 •10 -12 e cm (electron) m 0 x c -1 S = { 4.6 •10 -14 e cm (muon) 5.3 •10 -15 e cm (nucleon ) VSI

  8. Instable Particle EDMs  In principle EDM not forbidden in instable states z → e.g. transition dipoles exist s z  Heavy (therefore instable) atoms S have general advantage + → deformed nuclei X → Z x enhancement (x typically 2…3) -  Instable particles may have detection advantage → b – asymmetry → are there oscillations in EDMs ? (axions) VSI

  9. An EDM Violates P,T and with CPT also CP VSI

  10. Possible Sources of EDMs The numerically best experiment until now- 199 Hg @Seattle – Leaves somewhat restricted room for SUSY … VSI

  11. Lines of attack towards an EDM Hg Xe Free Particles neutron Atoms Tl muon Cs Rb deuteron Ra Rn bare nuclei ? Fr …  electron EDM  particle EDM …  nuclear EDM  unique information  enhancements Electric  new insights  challenging  new techniques Dipole technology  challenging Moment technology goal:  electron EDM  electron EDM new source of CP  strong enhancements  strong enhancements  new techniques  systematics ??  poor spectroscopic BaF , YbF garnets data (Gd 3 Ga 5 O 12 ) PbO ,WC Condensed State (Gd 3 Fe 2 Fe 3 O 12 ) PbF ,ThO Molecules solid He ? HfF + ,ThF + liquid Xe RaF , … VSI

  12. Enhancements of particle EDMs P. Sandars, 1968  go for heavy systems, where Z>>1, e.g. Hg, Xe  take advantage of enhancements, e.g. Ra, Rn  consider molecules such as YbF, RaF , … VSI

  13. Highlight: ThO electron EDM experiment E ext Th + E eff ~ P  2 Z 3 e / a 0 2 due to relativity E eff (P.G.H. Sandars) E eff  80 GV/cm Jan 2014 O – (depending on theorist) E ext ~ 1 V/cm enough for ThO New limit for e - d e < 8.7* 10 -29 ecm d (90% c.l.) Doyle, Gabrielse , DeMille Experiment presently taking further data VSI

  14. Atomic/Molecular Enhancement Factors for Electron EDM Particle Rb Cs Tl Fr Ra Enhancement 24 125 585 1 150 40 000 Flambaum, Dzuba, 2012 Particle ThO BaF YbF PbO watch out: Saturation 10 9 5x10 5 1.6 x 10 6 6 x 10 4 Enhancement → different theorists agree, typically at 30% level VSI

  15. Radium Isotopes 206 Pb + 12 C A Ra + (218-A) n Lifetime Spin 206 Pb beam 209 4.6(2) s 5/2 12 C target 211 13(2) s 1/2 TRI m P@KVI 212 13.0(2) s TRI μ P separator 213 2.74(6) m 1/2 214 2.46(3) s Thermal ionizer Δ N <14 Sources or fragmentation 221 28.2 s 5/2 To RFQ (Paul trap) Rate after TI 223 11.43(5) d 3/2 225 Ra 224 3.6319(23) d extraction from 229 Th source (ANL) Long lived 229 Th source in an oven (VSI) 225 14.9(2) d 1/2 Other Isotopes 226 1600 y Online production at accelerator facilities e.g. 227 42.2(5) m 3/2 TRI m P@KVI ( flux ~ 10 5 /s) (until 2013) ISOLDE , CERN ( flux ~ 10 9 /s) 229 4.0(2) m 5/2 FRIB VSI

  16. Radium EDMs Atomic energy level diagram of Ra 7s7p 1 P 1  Nearly degenerate opposite parity  Nearly degenerate opposite parity 3 P 1 and 3 D 1 enhancement ~5000 e EDM 3 P 1 and 3 D 2 enhancement > 10 4 2 7s6d 1 D 2     3 3 3 3 3 | | | | D er P P H D  2 2 1 1 2 EDM 1 d 1 1 1 7s6d 3 D  0 3 3 7s7p 3 P ( ) ( ) E D E P 2 1 1 714.3 nm V. A. Dzuba et al. Phys. Rev. A, 61, 062509 (2000) 482.7 nm Parity doublet Density distribution of nuclear charge has mixed |   | b  octupole and quadrupole deformation 7s 2 1 S 0  Deformed charge distribution in some isotopes ( 225 Ra)    (|  |b)/2  Nucleon EDM enhances ≈ 10 2 55 keV  +  (| + |b)/2 Dobczewski, Engel, PRL (2005) & Phys. Rev. C (2010) VSI

  17. EDM Enhancement by Nuclear Deformation  If that were true also for odd spin isotopes there’d be a nucleon EDM enhancement L. P. Gaffney et al, Nature 497 ,157 (2013) by factor of some 200  Need measurements for odd isotopes now !! (see e.g. Y.K. Khriplovich) VSI

  18. Radium and Barium Barium Radium 714 nm VSI

  19. 7s7p 1 P 1 225 Ra  ν =1MHz 7s7p 3 P 7s6d 3 D 2 7s6d 1 D 2 3 1 2 0 1 482.7 nm Cooling Te 2 714.3 nm Trapping 7s 2 1 S 0 Trimble et al. Rasmussen B. Santra et al, PRA (R) (2014) VSI

  20. Argonne 225 Ra Experiment → Near term goal 4  10 -25 ecm VSI R.H. Parker, Phys . Rev . Lett . 114, 233002 (2015) from M. Bishop, Argonne National Laboratory

  21. Towards a Rn EDM Experiment at TRIUMF T. Chupp and C. Svensson • Magnitude of EDM ~ Z 3 • Radon isotopes possibly octupole deformed • Rn is predicted to be ~ 600 times more sensitive than 199 Hg 6. Push with N 2 to trap gas in cell 1. Implant 121,123 Cs into catcher foil 3. Coldfinger at LN 2 temperature to absorb the atoms locally 4. Warm coldfinger 2. Heat foil to diffuse atoms into system 5. Fill chamber with N 2 VSI

  22. Radon-EDM Experiment + TRIUMF E929 T. Chupp (Michigan) & C. Svensson (Guelph) - Funding: NSF, DOE, NRC, NSERC TRIUMF Produce rare ion radon beam Collect in cell Comagnetometer Measure free precesion ( g anisotropy/ b asymmetry) b 3 221/223 Rn EDM projected sensitivity Facility Detection S d (100 d) 2 x 10 -26 e-cm g anisotropy ISAC 1 x 10 -27 e-cm b asymmetry ISAC 2 x 10 -28 e-cm b asymmetry FRIB ~ 5x10 -30 for 199 Hg Courtesy of Tim Chupp VSI

  23. U. Dammalapati @ LEAP, Kananzawa 2016 Y. Sakemi et al . Experiment is on the move to U Tokyo / RIKEN VSI

  24. Generic EDM Figure of Merit figure of merit enhancement * enh factor # particles electric field in experiment polarization total measurment time efficiency coherence time VSI

  25. Preferred Systems T measurement time / enh P polarization enh enhancement Particle Number Coherence Efficiency Electric Field Figure of Particles Time Merrit  [s]  N E [kV/cm] 199 Hg 10 14 2x10 2 8x10 -3 5x10 13 10 129 Xe 10 22 10 4 9x10 -9 1x10 14 3.6 10 11 1.1x10 -3 2x10 -2 2x10 13 ThO <0.1 10 5 1.5x10 -3 3x10 -2 1x10 12 YbF 10 10 11 10 -1 10 -2 5x10 13 BaF 10 225 Ra 10 3 4x10 1 7x10 -5 3x10 6 67 VSI

  26. EDM Experiments: Efficiency 0 ● realized ● future / enh B. Santra, L. Willmann (2013) VSI

  27. HfF / enh VSI

  28. Cold Molecules for EDMs & Parity SrF BaF RaF VSI

  29. Precision Measurements with Molecules • Heavy diatomic molecules ( SrF, RaF,. .) are suited for precision measurements (parity violation, eEDM) • Large enhancement due to almost degenerate rotational levels • Ultracold molecules by a traveling wave decelerator and laser cooling • Benefit from the long interaction time provided by a cold, trapped sample C. Meinema, J. v/d Berg, S. Hoekstra VSI

  30. Traveling wave decelerator SrF VSI C. Meinema, J. v/d Berg, S. Hoekstra

  31. Traveling wave decelerator 5 m of decelerator 10 modules of 50 cm 3360 ring electrodes diameter electrode: 4 mm C. Meinema, J. v/d Berg, S. Hoekstra VSI

  32. SrF Slowed Down Signal and Simulations - 4 of 8 amplifiers - 2 m machine C. Meinema, J. v/d Berg, S. Hoekstra VSI

  33. SrF Slowed Down and Guided - 8 of 8 amplifiers - 4 m machine S. Hoekstra, S. Mathavan, A. Zapara, Q. Esajas, VSI S. Hoekstra et al. The way to go for eEDM below 10 -29 ecm VSI

  34. BaF eEDM machine in statu nascendi S.Hoekstra, A. Borschevsky, K. Jungmann, R.G.E. Timmermans, L. Willmann, H. Bethlem, W. Ubachs et al. (FOM/NWO programme 2016-2022) → eEDM Collaboration Goal: Best EDM Limit on Electron S. Hoekstra, S. Mathavan, A. Zapara, Q. Esajas, VSI VSI

  35. Parity → relatively large effects in some atoms and molecules scaling with Z 3 or even stronger → one valence electron atoms to extract precise constants → more complex systems to study e.g. anapole moments VSI

Recommend


More recommend