INFERENCE SCHEMES FOR M BEST SOLUTIONS FOR SOFT CSPS Emma Rollón, Natalia Flerova and Rina Dechter erollon@lsi.upc.edu, flerova@ics.uci.edu, dechter@ics.uci.edu Universitat Politècnica de Catalunya University of California, Irvine
Summary Optimization problems: Finding the best solution Finding the m-best solutions Applications of the m-best solutions: Set of diverse solutions desired (e.g., haplotaping) Constraints are hard to formalized (e.g., portfolio mgmt) Sensitivity analysis (e.g., biological sequence alignment)
Summary Previous works on the m-best tasks: Compute the m-best solutions by successively computing the best solution, each time using a slightly different reformulation of the original problem. Lawler, 1972; Nilsson, 1998; Yanover and Weiss, 2004; Compute the m best solutions in a single pass of algorithm, using message passing/propagation Seroussi and Golmard, 1994 ; Elliot, 2007;
Summary Our contribution: We provide a formalization of the m-best task within the unifying framework of c-semiring, making many known inference schemes immediately applicable. In particular, we focus on Graphical Models and extend: Bucket Elimination (exact algorithm) Mini-Bucket Elimination (bounding algorithm) We show how to tighten the bound on the best solution using a bound on the m-best solutions.
1-best vs. m-best optimization 1-best optimization m-best optimization Variables : X = {X 1 , X 2 , X 3 ,…, X n } Finite domain values: D = {D 1 , D 2 ,…, D n } n Objective function: : F D A i 1 i A is a totally ordered set (<) of valuations F ( t ) such that F ( 1 t ),..., F ( t ) such that m t ' t : F ( t ) F ( t ' ) t ' t , t 1 i j m F ( t ) F ( t ) F ( t ' ) i j i j
Graphical Model X = {x 1 , …, x n }: a set of variables D = {D 1 , …, D n }: a set of domain values {f 1 , …, f e }: a set of local functions f j : D Y A Y X scope of f j : combination operator over functions Interaction graph: x x x x 2 3 n 1
Graphical Model e f k F( X ) Global view (objective function): k 1 Reasoning task: X F ( ) X Particular instantiations: Task A N U min WCSP max 0 ... 1 MPE P(e) 0 ... 1
Bucket Elimination Select a var Combination Marginalization Output x 1 x 1 e f k 5 4 () X x 2 x 2 x 2 x 5 x 5 x 5 BE k 1 x 4 x 4 x 3 x 4 x 3 x 3 Complete and correct : whenever the task can be defined over a semiring [Shafer et. Al, Srivanas et al, Kohlas et al.]
Bucket Elimination Select a var Combination Marginalization Output x 1 x 1 e f k 5 4 () X x 2 x 2 x 2 x 5 x 5 x 5 BE k 1 x 4 x 4 x 3 x 4 x 3 x 3 elim-opt min () = c 1 = WCSP
Bucket Elimination Select a var Combination Marginalization Output x 1 x 1 e f k 5 4 () X x 2 x 2 x 2 x 5 x 5 x 5 BE k 1 x 4 x 4 x 3 x 4 x 3 x 3 elim-opt min () = c 1 = WCSP ?? ?? elim-m-opt () = {c 1 ,...,c m } = m-best WCSP
Bucket Elimination Select a var Combination Marginalization Output x 1 x 1 e f k 5 4 () X x 2 x 2 x 2 x 5 x 5 x 5 BE k 1 x 4 x 4 x 3 x 4 x 3 x 3 elim-opt min () = c 1 Each tuple is the best = WCSP cost extension to x1 ?? ?? elim-m-opt () = {c 1 ,...,c m } = m-best WCSP Each tuple has to be the m-best cost extensions to x1
From 1-best to m-best optimization m-best WCSP (m = 2) WCSP Functions m f : l ( Y ) [ 0 ... 1 ] : ( ) [ 0 ... 1 ] f l Y f ( t ) c 1 f ( t ) c 1 , c 2 ( ) 6 ; ( ) 5 f t g t f ( t ) 3 , 5 ; g ( t ) 1 , 6 min min f ( x a ) 6 ; f ( x b ) 5 f ( x a ) 3 , 5 ; f ( x b ) 1 , 6
From 1-best to m-best optimization m-best WCSP (m = 2) WCSP Functions m f : l ( Y ) [ 0 ... 1 ] : ( ) [ 0 ... 1 ] f l Y f ( t ) c 1 f ( t ) c 1 , c 2 f ( t ) 6 ; g ( t ) 5 f ( t ) 3 , 5 ; g ( t ) 1 , 6 f ( t ) g ( t ) 6 5 11 f ( t ) g ( t ) 4 , 9 , 6 , 11 { 4 , 6 } min min f ( x a ) 3 , 5 ; f ( x b ) 1 , 6 f ( x a ) 6 ; f ( x b ) 5 min f min 5 , 6 5 min f 3 , 5 , 1 , 6 { 1 , 3 } x x
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 2
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 1 4
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 4
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 nd best 2 4
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 nd best 2 4 1 5
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 nd best 2 4 1 3 5 4
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 nd best 3 rd best 2 4 1 3 5 4
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 nd best 3 rd best 2 4 1 3 5 4
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 nd best 3 rd best 2 4 1 3 6 5 4 2
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 nd best 3 rd best 2 4 1 3 6 4 th best 5 4 2
How to combine two ordered sets { 1 , 3 , 6 } { 2 , 4 , 5 } S T 1 1 st best 2 3 1 2 nd best 3 rd best 2 4 1 3 6 4 th best 5 4 2 O(m 2 ) O(m * log(m+1))
Bucket Elimination Select a var Combination Marginalization Output x 1 x 1 e f k 5 4 () X x 2 x 2 x 2 x 5 x 5 x 5 BE k 1 x 4 x 4 x 3 x 4 x 3 x 3 elim-opt min () = c 1 = WCSP elim-m-opt min () = {c 1 ,..,c m } = m-best WCSP
Bucket Elimination Select a var Combination Marginalization Output x 1 x 1 e f k 5 4 () X x 2 x 2 x 2 x 5 x 5 x 5 BE k 1 x 4 x 4 x 3 x 4 x 3 x 3 elim-opt min () = c 1 = WCSP elim-m-opt min () = {c 1 ,..,c m } = m-best WCSP Correct and complete : the m-best problem can be formulated as a commutative semiring using the new operators
Semirings A commutative semiring is a triplet (A, ⊗ , ⊕ ), where operators satisfy three axioms: A1. The operation ⊕ is associative, commutative and idempotent, and there is an additive identity element called 0 such that a ⊕ 0 = a for all a ∈ A. A2. The operation ⊗ is also associative and commutative, and there is a multiplicative identity element called 1 such that a ⊗ 1 = a for all a ∈ A A3. ⊗ distributes over ⊕ , i.e., (a ⊗ b) ⊕ (a ⊗ c) = a ⊗ (b ⊕ c) Example: MPE task is defined over semiring K = (R,×,max), a CSP is defined over semiring K = ({0, 1}, ∧ , ∨ ), and a Weighted CSP is defined over semiring K = (N ∪ {∞},+,min). It was showed that the correctness of inference algorithms over a reasoning task P is ensured whenever P is defined over a semiring. [Shafer et. Al, Srivanas et al, Kohlas et al.]
Recommend
More recommend