inf4820 algorithms for artificial intelligence and
play

INF4820: Algorithms for Artificial Intelligence and Natural - PowerPoint PPT Presentation

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Common Lisp Fundamentals Stephan Oepen & Murhaf Fares Language Technology Group (LTG) August 30, 2017 Last Week: What is AI? Since the 1950s: Chatbots,


  1. Creating our own functions ◮ The special form defun associates a function definition with a symbol: General form (defun name ( parameter 1 . . . parameter n ) body ) 10

  2. Creating our own functions ◮ The special form defun associates a function definition with a symbol: General form (defun name ( parameter 1 . . . parameter n ) body ) Example ? (defun average (x y) (/ (+ x y) 2)) 10

  3. Creating our own functions ◮ The special form defun associates a function definition with a symbol: General form (defun name ( parameter 1 . . . parameter n ) body ) Example ? (defun average (x y) (/ (+ x y) 2)) ? (average 10 20) → 15 10

  4. The ‘Hello World!’ of Functional Programming ◮ Classic example: the factorial function. 11

  5. The ‘Hello World!’ of Functional Programming � 1 if n = 0 n ! = n × ( n − 1)! if n > 0 ◮ Classic example: the factorial function. ◮ A recursive procedure; calls itself, directly or indirectly. 11

  6. The ‘Hello World!’ of Functional Programming � 1 if n = 0 n ! = n × ( n − 1)! if n > 0 ◮ Classic example: the factorial function. (defun ! (n) ◮ A recursive procedure; calls itself, (if (= n 0) directly or indirectly. 1 (* n (! (- n 1))))) 11

  7. The ‘Hello World!’ of Functional Programming � 1 if n = 0 n ! = n × ( n − 1)! if n > 0 ◮ Classic example: the factorial function. (defun ! (n) ◮ A recursive procedure; calls itself, (if (= n 0) directly or indirectly. 1 (* n (! (- n 1))))) ◮ May seem circular, but is well-defined as long as there’s a base case terminating the recursion. 11

  8. The ‘Hello World!’ of Functional Programming � 1 if n = 0 n ! = n × ( n − 1)! if n > 0 ◮ Classic example: the factorial function. (defun ! (n) ◮ A recursive procedure; calls itself, (if (= n 0) directly or indirectly. 1 (* n (! (- n 1))))) ◮ May seem circular, but is well-defined as long as there’s a base case terminating the recursion. def fac(n): ◮ For comparison: a non-recursive r = 1 while (n > 0): implementation (in Python). r = r * n n = n - 1 return r 11

  9. A Special Case of Recursion: Tail Recursion ◮ A more efficient way to (defun ! (n) define n ! recursively. (!-aux 1 1 n)) ◮ Use a helper procedure (defun !-aux (r i n) with an accumulator (if (> i n) variable to collect the r product along the way. (!-aux (* i r) (+ i 1) n))) 12

  10. A Special Case of Recursion: Tail Recursion ◮ A more efficient way to (defun ! (n) define n ! recursively. (!-aux 1 1 n)) ◮ Use a helper procedure (defun !-aux (r i n) with an accumulator (if (> i n) variable to collect the r product along the way. (!-aux (* i r) (+ i 1) n))) 12

  11. A Special Case of Recursion: Tail Recursion ◮ A more efficient way to (defun ! (n) define n ! recursively. (!-aux 1 1 n)) ◮ Use a helper procedure (defun !-aux (r i n) with an accumulator (if (> i n) variable to collect the r product along the way. (!-aux (* i r) ◮ The recursive call is in tail (+ i 1) position; n))) ◮ no work remains to be done in the calling function. ◮ Once we reach the base case, the return value is ready. 12

  12. A Special Case of Recursion: Tail Recursion ◮ A more efficient way to (defun ! (n) define n ! recursively. (!-aux 1 1 n)) ◮ Use a helper procedure (defun !-aux (r i n) with an accumulator (if (> i n) variable to collect the r product along the way. (!-aux (* i r) ◮ The recursive call is in tail (+ i 1) position; n))) ◮ no work remains to be done in the calling function. ◮ Once we reach the base case, the return value is ready. ◮ Most CL compilers do tail call optimization (TCO), so that the recursion is executed as an iterative loop. 12

  13. A Special Case of Recursion: Tail Recursion ◮ A more efficient way to (defun ! (n) define n ! recursively. (!-aux 1 1 n)) ◮ Use a helper procedure (defun !-aux (r i n) with an accumulator (if (> i n) variable to collect the r product along the way. (!-aux (* i r) ◮ The recursive call is in tail (+ i 1) position; n))) ◮ no work remains to be done in the calling function. ◮ Once we reach the base case, the return value is ready. ◮ Most CL compilers do tail call optimization (TCO), so that the recursion is executed as an iterative loop. ◮ (The next lecture will cover CL’s built-in loop construct.) 12

  14. Tracing the processes Recursive Tail-Recursive (defun ! (n) (defun ! (n) (if (= n 0) (!-aux 1 1 n)) 1 (defun !-aux (r i n) (* n (! (- n 1))))) (if (> i n) r (!-aux (* r i) (+ i 1) n))) ? (! 7) ⇒ (* 7 (! 6)) ? (! 7) ⇒ (* 7 (* 6 (! 5))) ⇒ (!-aux 1 1 7) ⇒ (* 7 (* 6 (* 5 (! 4)))) ⇒ (!-aux 1 2 7) ⇒ (* 7 (* 6 (* 5 (* 4 (! 3))))) ⇒ (!-aux 2 3 7) ⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (! 2)))))) ⇒ (!-aux 6 4 7) ⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (! 1))))))) ⇒ (!-aux 24 5 7) ⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1)))))) ⇒ (!-aux 120 6 7) ⇒ (* 7 (* 6 (* 5 (* 4 (* 3 2))))) ⇒ (!-aux 720 7 7) ⇒ (* 7 (* 6 (* 5 (* 4 6)))) ⇒ (!-aux 5040 8 7) ⇒ (* 7 (* 6 (* 5 24))) → 5040 ⇒ (* 7 (* 6 120)) ⇒ (* 7 720) → 5040 13

  15. Tracing the processes Recursive Tail-Recursive (defun ! (n) (defun ! (n) (if (= n 0) (!-aux 1 1 n)) 1 (defun !-aux (r i n) (* n (! (- n 1))))) (if (> i n) r (!-aux (* r i) (+ i 1) n))) ? (! 7) ⇒ (* 7 (! 6)) ? (! 7) ⇒ (* 7 (* 6 (! 5))) ⇒ (!-aux 1 1 7) ⇒ (* 7 (* 6 (* 5 (! 4)))) ⇒ (!-aux 1 2 7) ⇒ (* 7 (* 6 (* 5 (* 4 (! 3))))) ⇒ (!-aux 2 3 7) ⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (! 2)))))) ⇒ (!-aux 6 4 7) ⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (! 1))))))) ⇒ (!-aux 24 5 7) ⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1)))))) ⇒ (!-aux 120 6 7) ⇒ (* 7 (* 6 (* 5 (* 4 (* 3 2))))) ⇒ (!-aux 720 7 7) ⇒ (* 7 (* 6 (* 5 (* 4 6)))) ⇒ (!-aux 5040 8 7) ⇒ (* 7 (* 6 (* 5 24))) → 5040 ⇒ (* 7 (* 6 120)) ⇒ (* 7 720) → 5040 13

  16. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. 14

  17. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 14

  18. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 ? (quote pi) → pi 14

  19. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 ? (quote pi) → pi ? ’pi → pi 14

  20. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 ? (quote pi) → pi ? ’pi → pi ? foobar → error; unbound variable 14

  21. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 ? (quote pi) → pi ? ’pi → pi ? foobar → error; unbound variable ? ’foobar → foobar 14

  22. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 ? (quote pi) → pi ? ’pi → pi ? foobar → error; unbound variable ? ’foobar → foobar ? (* 2 pi) → 6.283185307179586d0 14

  23. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 ? (quote pi) → pi ? ’pi → pi ? foobar → error; unbound variable ? ’foobar → foobar ? (* 2 pi) → 6.283185307179586d0 ? ’(* 2 pi) → (* 2 pi) 14

  24. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 ? (quote pi) → pi ? ’pi → pi ? foobar → error; unbound variable ? ’foobar → foobar ? (* 2 pi) → 6.283185307179586d0 ? ’(* 2 pi) → (* 2 pi) ? () → error; missing procedure 14

  25. The quote Operator ◮ A special form making expressions self-evaluating. ◮ The quote operator (or simply ‘ ’ ’) suppresses evaluation. ? pi → 3.141592653589793d0 ? (quote pi) → pi ? ’pi → pi ? foobar → error; unbound variable ? ’foobar → foobar ? (* 2 pi) → 6.283185307179586d0 ? ’(* 2 pi) → (* 2 pi) ? () → error; missing procedure ? ’() → () 14

  26. Both Code and Data are S-Expressions ◮ We’ve mentioned how sexps are used to represent both data and code. ◮ Note the double role of lists: ◮ Lists are function calls: ? (* 10 (+ 2 3)) → 50 ? (bar 1 2) → error; function bar undefined 15

  27. Both Code and Data are S-Expressions ◮ We’ve mentioned how sexps are used to represent both data and code. ◮ Note the double role of lists: ◮ Lists are function calls: ? (* 10 (+ 2 3)) → 50 ? (bar 1 2) → error; function bar undefined ◮ But, lists can also be data: ? ’(foo bar) → (foo bar) ? (list ’foo ’bar) → (foo bar) 15

  28. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) 16

  29. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → 16

  30. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) 16

  31. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 16

  32. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) 16

  33. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 16

  34. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 16

  35. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → 16

  36. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → nil 16

  37. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → nil ◮ Many additional list operations (derivable from the above), e.g. ? (list 1 2 3) → (1 2 3) 16

  38. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → nil ◮ Many additional list operations (derivable from the above), e.g. ? (list 1 2 3) → (1 2 3) ? (append ’(1 2) ’(3) ’(4 5 6)) → (1 2 3 4 5 6) 16

  39. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → nil ◮ Many additional list operations (derivable from the above), e.g. ? (list 1 2 3) → (1 2 3) ? (append ’(1 2) ’(3) ’(4 5 6)) → (1 2 3 4 5 6) ? (length ’(1 2 3)) → 3 16

  40. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → nil ◮ Many additional list operations (derivable from the above), e.g. ? (list 1 2 3) → (1 2 3) ? (append ’(1 2) ’(3) ’(4 5 6)) → (1 2 3 4 5 6) ? (length ’(1 2 3)) → 3 ? (reverse ’(1 2 3)) → (3 2 1) 16

  41. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → nil ◮ Many additional list operations (derivable from the above), e.g. ? (list 1 2 3) → (1 2 3) ? (append ’(1 2) ’(3) ’(4 5 6)) → (1 2 3 4 5 6) ? (length ’(1 2 3)) → 3 ? (reverse ’(1 2 3)) → (3 2 1) ? (nth 2 ’(1 2 3)) → 3 16

  42. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → nil ◮ Many additional list operations (derivable from the above), e.g. ? (list 1 2 3) → (1 2 3) ? (append ’(1 2) ’(3) ’(4 5 6)) → (1 2 3 4 5 6) ? (length ’(1 2 3)) → 3 ? (reverse ’(1 2 3)) → (3 2 1) ? (nth 2 ’(1 2 3)) → 3 ? (last ’(1 2 3)) → (3) 16

  43. LISP = LISt Processing ◮ cons builds up new lists; first and rest destructure them. ? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3) ? (cons 0 ’(1 2 3)) → (0 1 2 3) ? (first ’(1 2 3)) → 1 ? (rest ’(1 2 3)) → (2 3) ? (first (rest ’(1 2 3))) → 2 ? (rest (rest (rest ’(1 2 3)))) → nil ◮ Many additional list operations (derivable from the above), e.g. ? (list 1 2 3) → (1 2 3) ? (append ’(1 2) ’(3) ’(4 5 6)) → (1 2 3 4 5 6) ? (length ’(1 2 3)) → 3 ? (reverse ’(1 2 3)) → (3 2 1) ? (nth 2 ’(1 2 3)) → 3 Wait, why not 3 ? ? (last ’(1 2 3)) → (3) 16

  44. Lists are Really Chained ‘cons’ Cells (1 2 3) � ❅ � ❅ � ✠ ❅ ❘ 1 � ❅ � ❅ � ✠ ❅ ❘ 2 � ❅ � ❅ ✠ � ❅ ❘ 3 nil (cons 1 (cons 2 (cons 3 nil))) 17

  45. Lists are Really Chained ‘cons’ Cells (1 2 3) ((1 2) 3) � ❅ � ❅ � ❅ � ✠ ❘ ❅ � ❅ � ✠ ❘ ❅ 1 � ✁ ❅ � ❅ � ✁ ❅ ✠ � ☛ ✁ ❅ ❘ � ❅ ✠ � ❅ ❘ 1 3 nil ❄ 2 � ❅ � ❅ � ❅ ✠ � ❘ ❅ � ❅ � ✠ ❅ ❘ 3 nil 2 nil (cons 1 (cons 2 (cons 3 nil))) (cons (cons 1 (cons 2 nil)) (cons 3 nil)) 17

  46. Assigning Values: ‘Generalized Variables’ ◮ defparameter declares a ‘global variable’ and assigns a value: ? (defparameter *foo* 42) → *FOO* ? *foo* → 42 18

  47. Assigning Values: ‘Generalized Variables’ ◮ defparameter declares a ‘global variable’ and assigns a value: ? (defparameter *foo* 42) → *FOO* ? *foo* → 42 ◮ setf provides a uniform way of assigning values to variables. 18

  48. Assigning Values: ‘Generalized Variables’ ◮ defparameter declares a ‘global variable’ and assigns a value: ? (defparameter *foo* 42) → *FOO* ? *foo* → 42 ◮ setf provides a uniform way of assigning values to variables. ◮ General form: (setf place value ) ◮ . . . where place can either be a variable named by a symbol or some other storage location: 18

  49. Assigning Values: ‘Generalized Variables’ ◮ defparameter declares a ‘global variable’ and assigns a value: ? (defparameter *foo* 42) → *FOO* ? *foo* → 42 ◮ setf provides a uniform way of assigning values to variables. ◮ General form: (setf place value ) ◮ . . . where place can either be a variable named by a symbol or some other storage location: ? (setf *foo* (+ *foo* 1)) 18

  50. Assigning Values: ‘Generalized Variables’ ◮ defparameter declares a ‘global variable’ and assigns a value: ? (defparameter *foo* 42) → *FOO* ? *foo* → 42 ◮ setf provides a uniform way of assigning values to variables. ◮ General form: (setf place value ) ◮ . . . where place can either be a variable named by a symbol or some other storage location: ? (setf *foo* (+ *foo* 1)) ? *foo* → 43 18

  51. Assigning Values: ‘Generalized Variables’ ◮ defparameter declares a ‘global variable’ and assigns a value: ? (defparameter *foo* 42) → *FOO* ? *foo* → 42 ◮ setf provides a uniform way of assigning values to variables. ◮ General form: (setf place value ) ◮ . . . where place can either be a variable named by a symbol or some other storage location: ? (setf *foo* (+ *foo* 1)) ? *foo* → 43 ? (setf *foo* ’(2 2 3)) 18

  52. Assigning Values: ‘Generalized Variables’ ◮ defparameter declares a ‘global variable’ and assigns a value: ? (defparameter *foo* 42) → *FOO* ? *foo* → 42 ◮ setf provides a uniform way of assigning values to variables. ◮ General form: (setf place value ) ◮ . . . where place can either be a variable named by a symbol or some other storage location: ? (setf *foo* (+ *foo* 1)) ? *foo* → 43 ? (setf *foo* ’(2 2 3)) ? (setf (first *foo*) 1) 18

  53. Assigning Values: ‘Generalized Variables’ ◮ defparameter declares a ‘global variable’ and assigns a value: ? (defparameter *foo* 42) → *FOO* ? *foo* → 42 ◮ setf provides a uniform way of assigning values to variables. ◮ General form: (setf place value ) ◮ . . . where place can either be a variable named by a symbol or some other storage location: ? (setf *foo* (+ *foo* 1)) ? *foo* → 43 ? (setf *foo* ’(2 2 3)) ? (setf (first *foo*) 1) ? *foo* → (1 2 3) 18

  54. Some Other Macros for Assignment Example Type of x Effect (incf x y) number (setf x (+ x y)) number (incf x) (incf x 1) number (decf x y) (setf x (- x y)) (decf x) number (decf x 1) list (push y x) (setf x (cons y x)) (pop x) list (let ((y (first x))) (setf x (rest x)) y) list (pushnew y x) (if (member y x) x (push y x)) 19

  55. Some Other Macros for Assignment Example Type of x Effect (incf x y) number (setf x (+ x y)) number (incf x) (incf x 1) number (decf x y) (setf x (- x y)) (decf x) number (decf x 1) list (push y x) (setf x (cons y x)) (pop x) list (let ((y (first x))) (setf x (rest x)) y) list (pushnew y x) (if (member y x) x (push y x)) Shall we write our own push and pop ? 19

  56. Some Other Macros for Assignment Example Type of x Effect (incf x y) number (setf x (+ x y)) number (incf x) (incf x 1) number (decf x y) (setf x (- x y)) (decf x) number (decf x 1) list (push y x) (setf x (cons y x)) (pop x) list (let ((y (first x))) (setf x (rest x)) y) list (pushnew y x) (if (member y x) x (push y x)) Shall we write our own push and pop ? Just a second! 19

  57. Local Variables ◮ Sometimes we want to store intermediate results. ◮ let and let* create temporary value bindings for symbols. ? (defparameter *foo* 42) → *FOO* ? (defparameter *bar* 100) → *BAR* ? (let ((*bar* 7) (baz 1)) (+ baz *bar* *foo*)) → 20

  58. Local Variables ◮ Sometimes we want to store intermediate results. ◮ let and let* create temporary value bindings for symbols. ? (defparameter *foo* 42) → *FOO* ? (defparameter *bar* 100) → *BAR* ? (let ((*bar* 7) (baz 1)) (+ baz *bar* *foo*)) → 50 20

  59. Local Variables ◮ Sometimes we want to store intermediate results. ◮ let and let* create temporary value bindings for symbols. ? (defparameter *foo* 42) → *FOO* ? (defparameter *bar* 100) → *BAR* ? (let ((*bar* 7) (baz 1)) (+ baz *bar* *foo*)) → 50 ? *bar* → 20

  60. Local Variables ◮ Sometimes we want to store intermediate results. ◮ let and let* create temporary value bindings for symbols. ? (defparameter *foo* 42) → *FOO* ? (defparameter *bar* 100) → *BAR* ? (let ((*bar* 7) (baz 1)) (+ baz *bar* *foo*)) → 50 ? *bar* → 100 20

  61. Local Variables ◮ Sometimes we want to store intermediate results. ◮ let and let* create temporary value bindings for symbols. ? (defparameter *foo* 42) → *FOO* ? (defparameter *bar* 100) → *BAR* ? (let ((*bar* 7) (baz 1)) (+ baz *bar* *foo*)) → 50 ? *bar* → 100 ? baz → 20

  62. Local Variables ◮ Sometimes we want to store intermediate results. ◮ let and let* create temporary value bindings for symbols. ? (defparameter *foo* 42) → *FOO* ? (defparameter *bar* 100) → *BAR* ? (let ((*bar* 7) (baz 1)) (+ baz *bar* *foo*)) → 50 ? *bar* → 100 ? baz → error; unbound variable 20

  63. Local Variables ◮ Sometimes we want to store intermediate results. ◮ let and let* create temporary value bindings for symbols. ? (defparameter *foo* 42) → *FOO* ? (defparameter *bar* 100) → *BAR* ? (let ((*bar* 7) (baz 1)) (+ baz *bar* *foo*)) → 50 ? *bar* → 100 ? baz → error; unbound variable ◮ Bindings valid only in the body of let . ◮ Previously existing bindings are shadowed within the lexical scope. 20

  64. Local Variables ◮ Sometimes we want to store intermediate results. ◮ let and let* create temporary value bindings for symbols. ? (defparameter *foo* 42) → *FOO* ? (defparameter *bar* 100) → *BAR* ? (let ((*bar* 7) (baz 1)) (+ baz *bar* *foo*)) → 50 ? *bar* → 100 ? baz → error; unbound variable ◮ Bindings valid only in the body of let . ◮ Previously existing bindings are shadowed within the lexical scope. ◮ let* is like let but binds sequentially . 20

  65. Predicates ◮ A predicate tests some condition. ◮ Evaluates to a boolean truth value: ◮ nil (the empty list) means false . ◮ Anything non- nil (including t ) means true . ? (listp ’(1 2 3)) → t ? (null (rest ’(1 2 3))) → nil ? (evenp 2) → t ? (defparameter foo 42) ? (or (not (numberp foo)) (and (>= foo 0) (<= foo 42))) → t ◮ Plethora of equality tests: eq , eql , equal , and equalp . 21

  66. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. 22

  67. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. ? (eq (list 1 2 3) ’(1 2 3)) → nil 22

  68. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. ? (eq (list 1 2 3) ’(1 2 3)) → nil ? (equal (list 1 2 3) ’(1 2 3)) → t 22

  69. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. ? (eq (list 1 2 3) ’(1 2 3)) → nil ? (equal (list 1 2 3) ’(1 2 3)) → t ? (eq 42 42) → ? [implementation-dependent] 22

  70. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. ? (eq (list 1 2 3) ’(1 2 3)) → nil ? (equal (list 1 2 3) ’(1 2 3)) → t ? (eq 42 42) → ? [implementation-dependent] ? (eql 42 42) → t 22

  71. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. ? (eq (list 1 2 3) ’(1 2 3)) → nil ? (equal (list 1 2 3) ’(1 2 3)) → t ? (eq 42 42) → ? [implementation-dependent] ? (eql 42 42) → t ? (eql 42 42.0) → nil 22

  72. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. ? (eq (list 1 2 3) ’(1 2 3)) → nil ? (equal (list 1 2 3) ’(1 2 3)) → t ? (eq 42 42) → ? [implementation-dependent] ? (eql 42 42) → t ? (eql 42 42.0) → nil ? (equalp 42 42.0) → t 22

  73. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. ? (eq (list 1 2 3) ’(1 2 3)) → nil ? (equal (list 1 2 3) ’(1 2 3)) → t ? (eq 42 42) → ? [implementation-dependent] ? (eql 42 42) → t ? (eql 42 42.0) → nil ? (equalp 42 42.0) → t ? (equal "foo" "foo") → t 22

  74. Equality for One and All ◮ eq tests object identity; not applicable for numbers or characters. ◮ eql is like eq , but well-defined on numbers and characters. ◮ equal tests structural equivalence (recursively for lists and strings). ◮ equalp is like equal but insensitive to case and numeric type. ? (eq (list 1 2 3) ’(1 2 3)) → nil ? (equal (list 1 2 3) ’(1 2 3)) → t ? (eq 42 42) → ? [implementation-dependent] ? (eql 42 42) → t ? (eql 42 42.0) → nil ? (equalp 42 42.0) → t ? (equal "foo" "foo") → t ? (equalp "FOO" "foo") → t 22

Recommend


More recommend